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This article explores the two-dimensional quantum harmonic oscillator through
interactive visualizations. We consider a perturbation potential V(z,y) « xy and
compute the first-order corrections to the energy levels due to the perturbation. We
also show that the problem can be solved exactly by transforming the coordinates
to the new coordinates Z,,Z, and p;,p, which are decoupled. The interactive
plot allows readers to adjust quantum numbers n, and n, to visualize both the
wavefunctions and probability densities in real-time.
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Consider a two-dimensional harmonic oscillator with the potential
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We want to consider a degenerate energy state with the eigenvalue 3Aw, and compute the

first-order corrections to the above energy level due to the perturbation H, = Kzy.

The level with energy 3hw is triple degenerate with the states |20), [11) and |02). We need to
find the matrix elements of H; = kxy in this degenerate subspace basis. The matrix we have
will be 3 x 3 with 9 entries. But not all of them are nonzero (since x and y can change the
state by 1 unit only), furthermore as zy is an Hermitian and real operator, the matrix will be
symmetric (with respect to usual diagonal line). And finally the symmetry between = and y
will force the matrix to be symmetric with respect to the other diagonal line. To sum up we
need to calculate only 1 entry, others will be dictated by the symmetry, and will be the same.
Let’s calculate
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The matrix we have is,
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The eigenvalues are easy to get since J, is in the spin-1 space, so it will have eigenvalues
0,1,—1. For our matrix the eigenvalues are 0, i%, which are the first order corrections to
the energy, 3w. Now if we want to find the states corresponding to these energy levels we just
find the eigenvectors of the above matrix, which are also the eigenvectors of J,. Using the

eigenvectors, we have the following first order corrected eigenstates of H,
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with the energies 3w, 3w — % and 3w + %, respectively. It is important to note that

this problem could have been solved exactly by diagonalizing the potential V = %mw2 (22 +
y?) + kxy which can be done transforming the coordinates z,y to the coordinates 7,§. The
transformation is found by diagonalizing the matrix,
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The eigenvalues are mw* + k and mw= — k with the eigenvectors 75 ( 1 ) and 7 ( 1 ) .

What this algebra tells us is that if we define new coordinates T, = ng and Ty = I—\}y, then
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You can check that the momentum part is transformed simply by renaming p; by p,. So the
final Hamiltonian we have, is simply the Hamiltonian for two decoupled harmonic oscillators

with different frequencies. The total energy of the system is given by E = {/w? + %(ﬁl +

1)+ /w? — £(fi, + 1). Now as this is the exact answer, it must be equal to the approximate
answer found before, at the first order in k. To compare we need to set the values n; and 7,
to the values which produce E = 3w when k = 0. The results are |20), |11) and |02), but one
must be careful that the states are not identical to the previous ones as the new pairs are in
the new coordinates (that is why they have ~ ). The exact energy levels can be expanded at
the first order as
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We note that the agreement of the exact results for energy with the perturbation theory results
at the first order.
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Figure 1 shows the probability density |i(x,y)|* for the selected quantum numbers.

Figure 1: Wavefunction ¢(x,y) for n, =2 =n
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