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This article explores the two-dimensional quantum harmonic oscillator through
interactive visualizations. We consider a perturbation potential 𝑉 (𝑥, 𝑦) ∝ 𝑥𝑦 and
compute the first-order corrections to the energy levels due to the perturbation. We
also show that the problem can be solved exactly by transforming the coordinates
to the new coordinates ̃𝑥1, ̃𝑥2 and ̃𝑝1, ̃𝑝2 which are decoupled. The interactive
plot allows readers to adjust quantum numbers 𝑛𝑥 and 𝑛𝑦 to visualize both the
wavefunctions and probability densities in real-time.
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Consider a two-dimensional harmonic oscillator with the potential

𝑉 (𝑥, 𝑦) = 1
2𝑚𝜔2(𝑥2 + 𝑦2). (1)

We want to consider a degenerate energy state with the eigenvalue 3ℏ𝜔, and compute the
first-order corrections to the above energy level due to the perturbation 𝐻1 = 𝐾𝑥𝑦.

The level with energy 3ℏ𝜔 is triple degenerate with the states |20⟩, |11⟩ and |02⟩. We need to
find the matrix elements of 𝐻1 = 𝑘𝑥𝑦 in this degenerate subspace basis. The matrix we have
will be 3 × 3 with 9 entries. But not all of them are nonzero (since 𝑥 and 𝑦 can change the
state by 1 unit only), furthermore as 𝑥𝑦 is an Hermitian and real operator, the matrix will be
symmetric (with respect to usual diagonal line). And finally the symmetry between 𝑥 and 𝑦
will force the matrix to be symmetric with respect to the other diagonal line. To sum up we
need to calculate only 1 entry, others will be dictated by the symmetry, and will be the same.
Let’s calculate

⟨11|𝑘𝑥𝑦|20⟩ = 𝑘⟨1|𝑥|0⟩⟨1|𝑦|2⟩ = 𝑘√
2𝑚𝜔

. (2)

The matrix we have is,

𝐻1 = 𝑘
𝑚𝜔

⎛⎜⎜
⎝

0 1/
√

2 0
1/

√
2 0 1/

√
2

0 1/
√

2 0
⎞⎟⎟
⎠

= 𝑘
𝑚𝜔𝐽𝑥. (3)
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The eigenvalues are easy to get since 𝐽𝑥 is in the spin-1 space, so it will have eigenvalues
0, 1, −1. For our matrix the eigenvalues are 0, ± 𝑘

𝑚𝜔 , which are the first order corrections to
the energy, 3𝜔. Now if we want to find the states corresponding to these energy levels we just
find the eigenvectors of the above matrix, which are also the eigenvectors of 𝐽𝑥. Using the
eigenvectors, we have the following first order corrected eigenstates of 𝐻,

|0⟩ = |20⟩ − |02⟩√
2

, |−⟩ = |20⟩ −
√

2|11⟩ + |02⟩
2 , |+⟩ = |20⟩ +

√
2|11⟩ + |02⟩
2 (4)

with the energies 3𝜔, 3𝜔 − 𝑘
𝑚𝜔 and 3𝜔 + 𝑘

𝑚𝜔 , respectively. It is important to note that
this problem could have been solved exactly by diagonalizing the potential 𝑉 = 1

2𝑚𝜔2(𝑥2 +
𝑦2) + 𝑘𝑥𝑦 which can be done transforming the coordinates 𝑥, 𝑦 to the coordinates ̃𝑥, ̃𝑦. The
transformation is found by diagonalizing the matrix,

𝑉𝑖𝑗 = 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗 𝑉 = ( 𝑚𝜔2 𝑘
𝑘 𝑚𝜔2 ) . (5)

The eigenvalues are 𝑚𝜔2 + 𝑘 and 𝑚𝜔2 − 𝑘 with the eigenvectors 1√
2 ( 1

1 ) and 1√
2 ( 1

−1 ) .
What this algebra tells us is that if we define new coordinates ̃𝑥1 = 𝑥+𝑦√

2 and ̃𝑥2 = 𝑥−𝑦√
2 , then

𝑉 (𝑥, 𝑦) = 1
2𝑉𝑖𝑗𝑥𝑖𝑥𝑗 = 1

2𝑚𝜔2(𝑥2 + 𝑦2) + 𝑘𝑥𝑦

= 1
2

̃𝑉𝑖𝑗 ̃𝑥𝑖 ̃𝑥𝑗 = 1
2(𝑚𝜔2 + 𝑘) ̃𝑥2

1 + 1
2(𝑚𝜔2 − 𝑘) ̃𝑥2

2. (6)

You can check that the momentum part is transformed simply by renaming 𝑝𝑖 by ̃𝑝𝑖. So the
final Hamiltonian we have, is simply the Hamiltonian for two decoupled harmonic oscillators
with different frequencies. The the total energy of the system is given by 𝐸 = √𝜔2 + 𝑘

𝑚(𝑛̃1 +
1
2) + √𝜔2 − 𝑘

𝑚(𝑛̃2 + 1
2). Now as this is the exact answer, it must be equal to the approximate

answer found before, at the first order in 𝑘. To compare we need to set the values 𝑛̃1 and 𝑛̃2
to the values which produce 𝐸 = 3𝜔 when 𝑘 = 0. The results are | ̃2 ̃0⟩, | ̃1 ̃1⟩ and | ̃0 ̃2⟩, but one
must be careful that the states are not identical to the previous ones as the new pairs are in
the new coordinates (that is why they have ̃ ). The exact energy levels can be expanded at
the first order as

𝐸1̃1̃ = [√𝜔2 + 𝑘
𝑚 (1 + 1

2) + √𝜔2 − 𝑘
𝑚 (1 + 1

2)] = 3𝜔 + 𝑂(𝑘2),

𝐸2̃0̃ = [√𝜔2 + 𝑘
𝑚 (2 + 1

2) + √𝜔2 − 𝑘
𝑚 (1

2)] = 3𝜔 + 𝑘
𝑚𝜔 + 𝑂(𝑘2),

𝐸0̃2̃ = [√𝜔2 + 𝑘
𝑚 (1

2) + √𝜔2 − 𝑘
𝑚 (2 + 1

2)] = 3𝜔 − 𝑘
𝑚𝜔 + 𝑂(𝑘2). (7)
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We note that the agreement of the exact results for energy with the perturbation theory results
at the first order.

Figure 1 shows the probability density |𝜓(𝑥, 𝑦)|2 for the selected quantum numbers.

Figure 1: Wavefunction 𝜓(𝑥, 𝑦) for 𝑛𝑥 = 2 = 𝑛𝑦.
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