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We analyze the probability distribution of the sum of two Weibull random vari-
ables by examining two redundant system configurations: sequential and inter-
leaved operation. We demonstrate that both configurations yield identical proba-
bility distributions represented by a convolution integral. For the special case of
exponential distributions (Weibull with shape parameter �=1), we derive a closed-
form solution through a Gamma distribution. For general Weibull distributions,
we propose using a generalized Gamma function with carefully selected parameters
to approximate the convolution. We also provide an interactive visualization of the
probability functions.
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Problem Statement

Consider having two generators, one of which is redundant. If the generators are known to
have a Weibull-like failure distribution, what is the probability distribution of losing both
generators? One can think of two ways of distributing the workload to two generators:

• Run the first generator until it dies, and then switch to the second one.
• Interleave the running between two generators to even out their workload.

We will first prove that in both cases, the reliability of a dual generator setup is the same.

Definitions

Let’s start with setting up the notation and the definitions. We will define failure probability
density function (PDF), cumulative failure distribution(CDF) and the reliability function (𝑅)
as follows:
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PDF ∶ 𝑓(𝑡), 𝑡 > 0 (1)

CDF ∶ 𝐹 (𝑡) = ∫
𝑡

0
𝑑𝜏𝑓(𝜏) (2)

Reliability ∶ 𝑅(𝑡) = 1 − 𝐹(𝑡). (3)

We will first prove that in both cases defined above, the reliability of a dual generator system
is the same.

Run the first generator first until it dies

Define the time generator#1 dies as 𝑇1 = 𝑡1. The second generator will turn on at 𝑡1. At any
time 𝑡, the effective clock on generator#2 will show 𝑡 − 𝑡1 (obviously with 𝑡 > 𝑡1). Therefore
the probability that generator#2 will fail at 𝑡 given generator#1 failed at 𝑡1 can be written
as:

𝑓(𝑇2 = 𝑡|𝑇1 = 𝑡1) = 𝑓(𝑡 − 𝑡1)Θ(𝑡 − 𝑡1), (4)

where Θ is the unit step function ensuring 𝑡 > 𝑡1. This is the conditional probability of
generator#2 failing at 𝑡 given that the first one failed at 𝑡1. To remove the condition, we need
to multiply Eq. 4 with the probability of generator#1 to fail at 𝑡1 and integrate over 𝑡1:

𝑓(𝑇2 = 𝑡) = ∫
∞

0
𝑓(𝑇2 = 𝑡|𝑇1 = 𝑡1)𝑓(𝑡1)𝑑𝑡1

= ∫
∞

0
𝑓(𝑡 − 𝑡1)Θ(𝑡 − 𝑡1)𝑓(𝑡1)𝑑𝑡1

= ∫
𝑡

0
𝑓(𝑡 − 𝑡1)𝑓(𝑡1)𝑑𝑡1, (5)

which is the convolution integral of 𝑓(𝑡) with itself. We can compute the integral once we
specify 𝑓 , which we will do later.

Interleave generator runs

In this case, the workload is uniformly distributed over both generators until one of them fails.
After the first one fails, the second one will continue alone until it also fails. This is actually
a relatively simple calculation since the system failure time will be the sum of the individual
generator failure times. In the context of random variables, we just need to compute the
sum of two random variables, i.e. 𝑇 = 𝑇1 + 𝑇2. The cumulative probability function of 𝑇 is
calculated as:
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𝐹𝑇 (𝑡) = 𝑃(𝑇1 + 𝑇2 < 𝑡)
= ∫

𝑡1+𝑡2<𝑡
𝑓𝑇1

(𝑡1)𝑓𝑇2
(𝑡2)𝑑𝑡1𝑑𝑡2

= ∫
∞

−∞
∫

𝑡−𝑡2

−∞
𝑓𝑇2

(𝑡2)𝑑𝑡2𝑓𝑇1
(𝑡1)𝑑𝑡1

= ∫
∞

−∞
𝐹𝑇2

(𝑡 − 𝑡1)𝑓𝑇1
(𝑡1)𝑑𝑡1. (6)

The probability density function is the derivative of Eq. 6:

𝑓𝑇 (𝑡) = 𝑑
𝑑𝑡𝐹𝑇 (𝑡) = ∫

∞

−∞
𝑓𝑇2

(𝑡 − 𝑡1)𝑓𝑇1
(𝑡1)𝑑𝑡1

= ∫
𝑡

0
𝑓(𝑡 − 𝑡1)𝑓(𝑡1)𝑑𝑡1, (7)

where the limits of the integral are truncated to the range where 𝑓 ≠ 0. Since Eqs. 5 and 7 are
identical, we conclude that the system level failure distribution is identical in both cases.

Convolution integrals

We have shown that the failure distribution of a system with two generators is given by the
convolution integral of the individual generator failure densities. Let’s consider specific cases
of 𝑓 .

Exponential distribution: 𝛽 = 1

This is a special case of Weibull distribution. 𝑓 is parameterized by a single parameter 𝜆,
which represents the failure rate:

PDF ∶ 𝑓(𝑡) = 𝜆𝑒−𝜆𝑡, 𝑡 > 0 (8)

CDF ∶ 𝐹 (𝑡) = ∫
𝑡

0
𝑑𝜏𝑓(𝜏) = 1 − 𝑒−𝜆𝑡 (9)

Reliability ∶ 𝑅(𝑡) = 1 − 𝐹(𝑡) = 𝑒−𝜆𝑡.(#𝑒𝑞 ∶ 𝑟𝑒𝑥𝑝) (10)

From Eq. 7 we get:
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𝑓𝑇 (𝑡) = ∫
𝑡

0
𝑓(𝑡 − 𝑡1)𝑓(𝑡1)𝑑𝑡1

= 𝜆2 ∫
𝑡

0
𝑒−𝜆(𝑡−𝑡1)𝑒−𝜆𝑡1𝑑𝑡1

= 𝜆2𝑒−𝜆𝑡 ∫
𝑡

0
𝑑𝑡1 = 𝜆2 𝑡 𝑒−𝜆𝑡, (11)

which is actually a Γ distribution (this observation will prove to be critical for generic Weibull
case). The corresponding cumulative failure function is:

𝐹𝑇 (𝑡) = ∫
𝑡

0
𝑑𝜏𝑓𝑇 (𝜏) = 𝜆2 ∫

𝑡

0
𝑑𝜏 𝜏 𝑒−𝜆𝜏

= −𝜆2 𝑑
𝑑𝜆 [∫

𝑡

0
𝑑𝜏 𝑒−𝜆𝜏]

= 𝜆2 𝑑
𝑑𝜆 [𝑒−𝜆𝑡 − 1

𝜆 ]

= 1 − 𝑒−𝜆𝑡(1 + 𝜆𝑡). (12)

And, finally, the reliability function reads:

𝑅(𝑡) = 1 − 𝐹𝑇 (𝑡) = 𝑒−𝜆𝑡(1 + 𝜆𝑡). (13)

Generic Weibull Distribution

Note that what made our computation super-easy was the fact that we enjoyed the homo-
morphism property of the exponential function: 𝑒−(𝑡−𝑡1) = 𝑒−𝑡𝑒 𝑡1 , which resulted in neat
cancellations. We won’t have that property for a generic Weibull distribution. This will make
the convolution integral very hard to compute. Before referring to numerical computation,
let’s push our luck a bit. In the case of exponential distribution for individual generators, we
ended up with Γ distribution. Maybe, the generalized Γ function will be a good fit for generic
Weibull case. Generalized Γ distribution comes with 3 parameters, which provides (more than)
enough degrees of freedom to fit Weibull distribution. The functional form of genΓ is [1]:

genΓ(𝑡) = (𝑝/𝑎𝑑)𝑡𝑑−1𝑒−(𝑡/𝑎)𝑝

Γ(𝑑/𝑝) . (14)
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We are free to decide what 𝑝, 𝑎 and 𝑑 would be so that this function reasonably represents the
sum of two random variables. First consider 𝑝, which appears in the exponent as the power
of 𝑡. From physical perspective, this represents the failure mode type. We would like to keep
it same as 𝛽, i.e. 𝑝 = 𝛽, 𝛽 being the shape parameter of the generator Weibull distribution.
As for the term 𝑡𝑑−1: it is supposed to follow from an integration of two 𝑡𝛽−1 terms multiplied
together, that is 𝑡2𝛽−1. So, let’s try 𝑑 = 2𝛽. One last parameter we have to fix is 𝑎, and we
can fix it in such a way that the mean value we will calculate using genΓ will be equal to the
mean value of the sum of the two Weibull parameters.

The mean value of Weibull distribution, which is parameterized by scale parameter 𝛼 and
shape parameter 𝛽, is given by:

𝜇 = 𝛼Γ(1 + 1/𝛽), (15)

which is per generator. For two generators, the mean value of the total time is

𝜇𝑇 = 2𝛼Γ(1 + 1/𝛽), (16)

On the genΓ side the mean value is

𝜇genΓ = 𝑎Γ[(𝑑 + 1)/𝑝]
Γ[𝑑/𝑝] = 𝑎Γ[2 + 1/𝛽]

Γ[2] , (17)

where we used 𝑝 = 𝛽 and 𝑑 = 2𝛽. We require these two to be the same, i.e., 𝜇genΓ = 𝜇𝑇 .
Solving this equality for 𝑎, we get:

𝑎 = 2𝛼Γ[1 + 1/𝛽]
Γ[2 + 1/𝛽] , (18)

So, the genΓ with the selected parameters becomes:

genΓ(𝑡) = (𝛽/𝑎2𝛽)𝑡2𝛽−1𝑒−(𝑡/𝑎)𝛽 , (19)

where 𝑎 is defined in Eq. 18. This is the failure probability density 𝑓𝑇 (𝑡), and the cumulative
failure probability, 𝐹𝑇 (𝑡) is computed as the integral, which results in 𝛾(𝑡), known as incomplete
gamma function. For our purposes, we can compute the integral numerically.

This is a static copy. Find the interactive plot \href{https://tetraquark.vercel.app/post/adding_weibull}{here.}\newline
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Figure 1: PDF and CDF vs time. Find the interactive plot here.

[1] Wikipedia, “Generalized Gamma Distribution — Wikipedia, the free encyclopedia.”
https://en.wikipedia.org/wiki/Generalized_gamma_distribution, 2019.
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