
Abrikosov-Nielsen-Olesen flux tubes

2023-11-18

This article explores the physics of Abrikosov-Nielsen-Olesen (ANO) flux tubes,
which are topological defects arising from spontaneously broken local symmetries in
superconducting materials. We begin by examining how topological defects emerge
from both global and local symmetry breaking, using examples from magnetic
materials and superconductors. The mathematical framework of spontaneously
broken U(1) gauge symmetry is presented, leading to the formation of vortices and
flux tubes. We derive the Bogomol’nyi equations that describe these configurations
and discuss their physical properties, including mass, central charge, and BPS
saturation. The article provides insights into how these fundamental concepts
connect quantum field theory with condensed matter physics.
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Topological defects are remnants of spontaneously broken local or global symmetries. They
appear in many fields of physics ranging from high energy physics to solid state physics. One of
the most well known topological defects appears in magnetic materials. Let us consider a ma-
terial which is composed of clusters with magnetic moments. The dynamics of the system can
be described by a Heisenberg type Hamiltonian, which is invariant under rotations, i.e. there
are no preferred directions for the system. However, the physical realization of the ground
state of the system is not rotationally invariant. The direction of the magnetic moments are
chosen randomly at different locations. Nearby moments align with each other and create a
domain structure. The magnetization smoothly interpolates between different domains, and
the width of the transition range is the thickness of the domain wall. The domain wall is the
topological defect that emerges upon breaking of the rotational symmetry of the system by
randomly chosen magnetization. This is an example of spontaneously broken global symmetry.
The domain walls are physical objects: they carry (magnetic) energy, and they can be moved
or rotated by external currents or magnetic fields.

An example of spontaneously broken local symmetry occurs in superconducting materials. If
a superconducting material is placed in a strong magnetic field, the magnetic field penetrates
into the material at certain locations at which the superconductivity is lost. The magnetic field
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forms flux tubes which are one dimensional topological defects known as Abrikosov-Nielsen-
Olesen flux tubes [1]. Abrikosov-Nielsen-Olesen flux tubes are topological defects associated
with spontaneously broken 𝑈(1) gauge symmetry. For the case of high energy physics, vortices
or strings may form as a result of spontaneously broken unified theories. In the following
sections we first outline the field theoretical background of formation of topological defects.
In the first part of the thesis, we focus on vortices. We consider normalization of the mass
and central charge of vortices in 𝑁 = 2 supersymmetric field theory. In the second part of the
thesis, we consider strings which can be constructed as vortices extended along an additional
dimension. We then discuss the SBGW due cusps and kinks on cosmic strings.

Formation of Topological Defects

Topological defects are relics of spontaneously broken symmetries. The exact nature of the
defect depends on the group of the symmetry broken. Below we consider two important
cases.

Spontaneously Broken Global Symmetries

Let us consider the Lagrangian for a complex scalar field:

ℒ = 𝜕𝜇𝜑𝜕𝜇𝜑∗ − 𝑉 (𝜑, 𝜑∗). (1)

The potential can be chosen to be of the form

𝑉 (𝜑, 𝜑∗) = 𝜆2

2 (|𝜑|2 − 𝜂2

2 )
2

, (2)

which is shown in Figure 1.
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Figure 1: The quartic scalar potential.

The Lagrangian in Eq. 1 has a global 𝑈(1) symmetry, i.e. it remains invariant under the phase
rotations:

𝜑 → 𝑒𝑖𝜃𝜑, (3)

where 𝜃 is a constant real number. Although the field theory defined by the Lagrangian in
Eq. 1 is invariant under the phase rotations, the vacuum state of the field is not. The vacuum
state solution is given by the field configuration that minimizes the potential, which is

𝜑𝑉 = 𝜂√
2

𝑒𝑖𝜃𝑉 . (4)

𝜃𝑉 is the phase of field at the vacuum state, which has no physical significance since it can
be removed by a 𝑈(1) rotation. The solution 𝜑𝑉 is clearly not invariant under 𝑈(1) rotation,
hence the 𝑈(1) symmetry is spontaneously broken. The results of the broken symmetry can
be seen by expanding the field around the vacuum solution. It is convenient to separate out
the radial and angular components of the field by using the following expansion [2]

𝜑 = 𝜂 + 𝜉√
2

𝑒𝑖𝛼, (5)

where 𝜃𝑉 is set to zero. Plugging this expansion to Eq. 1 we get

ℒ = 1
2𝜕𝜇𝜉𝜕𝜇𝜉 − 𝜆2𝜂2

2 𝜉2 + 𝜂2

2 𝜕𝜇𝛼𝜕𝜇𝛼 + interaction terms. (6)
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The first two terms in the effective Lagrangian in Eq. 6 represent a neutral particle 𝜉 which
has mass 𝜆 𝜂 . It is important to note that 𝜉 corresponds to the radial excitation in the
potential well, therefore the particle sees the curvature of the potential. On the other hand,
the field 𝛼 has no mass term in Eq. 6. It corresponds to the angular excitation in the Mexican
hat-shaped potential. This massless mode is referred to as the Goldstone Boson. Whenever a
global symmetry is spontaneously broken Goldstone Bosons which correspond to the excitation
of the fields along the flat directions of the potential are generated. On the other hand, if the
broken symmetry is a local symmetry, the degrees of freedom of the excitations along the flat
directions are absorbed into the longitudinal component of gauge bosons which acquire mass
upon spontaneously breaking the symmetry. This mechanism is crucial for the formation of
vortices and flux tubes and hence it is discussed in detail below.

Spontaneously Broken Local Symmetries

In order to make the global 𝑈(1) symmetry defined in Eq. 3 local, one introduces a gauge
field 𝐴𝜇 with the following transformation

𝐴𝜇 → 𝐴𝜇 − 1
𝑒𝜕𝜇𝜃(𝑥), (7)

where 𝑒 is the coupling constant. The partial derivatives are replaced with the gauge covariant
derivatives

𝒟𝜇 = 𝜕𝜇 + 𝑖𝑒𝐴𝜇. (8)
With these definitions, the local 𝑈(1) invariant Lagrangian can be written as

ℒ = 𝒟𝜇𝜑𝒟𝜇𝜑∗ − 𝑉 (𝜑, 𝜑∗) − 1
4𝐹𝜇𝜈𝐹 𝜇𝜈, (9)

where
𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 (10)

is the field strength of the gauge field. The vacuum solutions are still as given in Eq. 4 and we
can use the expansion in Eq. 5. With this expansion the kinetic term in Eq. 9 can be written
as

ℒ𝐾 = 𝒟𝜇𝜑𝒟𝜇𝜑∗

= (𝜕𝜇 + 𝑖𝑒𝐴𝜇)(𝜂 + 𝜉√
2

𝑒𝑖𝛼)(𝜕𝜇 − 𝑖𝑒𝐴𝜇)(𝜂 + 𝜉√
2

𝑒−𝑖𝛼)

= 1
2𝜕𝜇𝜉𝜕𝜇𝜉 + 1

2(𝜕𝜇𝛼 + 𝑒𝐴𝜇)(𝜕𝜇𝛼 + 𝑒𝐴𝜇)(𝜂 + 𝜉)2. (11)

We note that 𝜕𝜇𝛼 term can be absorbed into 𝐴𝜇 by gauging as described in Eq. 7, which
shows that the would-be Goldstone boson is absorbed into the longitudinal component of the
vector field. The full Lagrangian can be written as

ℒ = 1
2𝜕𝜇𝜉𝜕𝜇𝜉 − 𝜆2𝜂2

2 𝜉2 + 1
2𝜂2𝐴𝜇𝐴𝜇 − 1

4𝐹𝜇𝜈𝐹 𝜇𝜈 + interaction terms, (12)
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which describes an interacting theory with a massive scalar and massive vector field. The
number of degrees of freedom before and after the symmetry breaking is the same: one degree
of freedom from the complex field is transferred to the vector field, which becomes massive,
and hence it can have longitudinal polarization.

Vortices and Strings

In this section we reproduce the vortex solutions for a spontaneously broken local Abelian
symmetry in 2+1 dimensions. The Lagrangian for a complex scalar field coupled to the gauge
field is given by

ℒ = 𝒟𝜇𝜑𝒟𝜇𝜑∗ − 𝑒2

2 (|𝜑|2 − 𝜂2)2 − 1
4𝐹𝜇𝜈𝐹 𝜇𝜈. (13)

We would like to consider the static solutions in 2 + 1 dimensions. Eliminating the terms with
time derivatives we can express the energy density as

ℰ = −ℒ = 𝒟𝑘𝜑𝒟𝑘𝜑∗ + 𝑒2

2 (|𝜑|2 − 𝜂2)2 + 1
2𝐹𝑘 𝑙𝐹 𝑘 𝑙, (14)

where 𝑘 = 1, 2 denotes the space indices. It is important to note that the potential chosen
here is a special case of Eq. 2, where 𝜆 is set to 𝑒 , which is the the coupling constant (and
also note that 𝜂 is re-scaled by a factor

√
2 ). In this special case the equations of motion,

which are a priori second order differential equations, can be reduced to first order differential
equations by Bogomol’nyi completion [3]. The energy density given in Eq. 14 can be written
in the following form

ℰ = 1
2 |(𝒟𝑘 + 𝑖𝜖𝑘𝑙𝒟𝑙)𝜑|2 + 1

2 (𝐹12 + 𝑒(|𝜑|2 − 𝜂2))2 + 𝜖𝑘𝑙𝜕𝑙(𝑒𝜂2𝐴𝑙 − 𝑖𝜑∗𝒟𝑙𝜑), (15)

where 𝜖𝑘𝑙 is the two dimensional Levi-Civita tensor with the convention 𝜖12 = 1 . The first two
terms in this equation are positive definite and the last one is a boundary term. Therefore the
energy can be minimized if the following equations are satisfied:

(𝒟1 ± 𝑖𝒟2)𝜑 = 0,
𝐹12 + 𝑒(|𝜑|2 − 𝜂2) = 0, (16)

which are first order Bogomol’nyi equations. The last term in Eq. 15 is a surface term. If one
integrates the last term over space coordinates, the result reads

𝒵 ≡ ∫ 𝑑2𝑥𝜖𝑘𝑙𝜕𝑙(𝑒𝜂2𝐴𝑙 − 𝑖𝜑∗𝒟𝑙𝜑) = 𝑒𝜂2 ∫
𝑟→∞

𝑟𝑑𝜃𝐴𝜃, (17)

which is proportional to the winding number of the gauge field (The second term in Eq. 17
vanishes exponentially.) 𝒵 is referred to as the central charge, since it commutes with the
generators of the supersymmetric extension of the model (To be more precise, for the case
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of vortex, 𝒵 commutes with a portion of the supersymmetry generators. The asymptotic
solutions of the Bogomol’nyi equations are

𝜑 = 𝜂𝑒𝑖𝑛𝜃,

𝐴𝑘 = −𝑛𝜖𝑘𝑙𝑥𝑙

𝑟2 , (18)

where 𝑛 is an integer that represents the winding number. The magnetic field corresponding
to the vector potential is 𝐹12 and it is confined to a region with radius of scale 1/𝜂 . This
is again in agreement with the conclusion that the gauge boson acquires a mass of 𝜂 , and
therefore the interaction strength decays exponentially with the distance.

The mass of vortex configuration reads

ℳ ≡ ∫ 𝑑2𝑥ℰ = 𝒵 = 2𝜋𝜂2|𝑛|. (19)

The equality of the mass and central charge is called the Bogomol’nyi Prasad Sommerfield
(BPS) saturation. The BPS saturation is far from coincidence: it holds even under quantum
corrections in supersymmetric extensions. If the vortex configuration is extended along the 𝑧
-axis, the result is a flux tube. The mass per unit length of the tube can be described as the
tension, and Eq. 19 shows that the tension is proportional to the square of 𝜂 , which is the
energy scale of the phase transition. Therefore the tension of the string critically depends on
the energy scale of the symmetry breaking.
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