\(\nextSection\)
Biot-Savart Law
Electromagnetism, Magnetism
\(\require{cancel}\)
Maxwell’s Equations
From Maxwell’s equations, we know that there are no magnetic monopoles. Therefore, the magnetic field is divergence free: \[\begin{eqnarray} \bnabla\cdot \mathbf{B} &=& 0 \label{eq:no_magnetic_monopoles}. \end{eqnarray}\] This implies that the magnetic field can be written as the curl of a vector potential: \[\begin{eqnarray} \mathbf{B} &=& \bnabla\times \mathbf{A} \label{eq:b_curl_a}. \end{eqnarray}\] We also know that the magnetic field is related to the current density by the following equation: \[\begin{eqnarray} \bnabla\times \mathbf{B} &=& \mu_0 \mathbf{J} \label{eq:b_curl_j}. \end{eqnarray}\]
Substituting Eq. \(\ref{eq:b_curl_a}\) into Eq. \(\ref{eq:b_curl_j}\) we get: \[\begin{eqnarray} \bnabla\times (\bnabla\times \mathbf{A}) &=& \mu_0 \mathbf{J} \label{eq:b_curl_j_a}. \end{eqnarray}\] We can use the epsilon tensor to rewrite the left hand side of the equation: \[\begin{eqnarray} \left(\bnabla\times (\bnabla\times \mathbf{A}) \right)_i &=& \epsilon_{ijk} \epsilon_{klm} \partial_j \partial_l A_m =\left(\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl} \right) \partial_j \partial_l A_m =\partial_i \cancelto{0}{\bnabla\cdot \mathbf{A}}-\bnabla^2\mathbf{A}_i \label{eq:b_curl_j_a_eps}. \end{eqnarray}\] Therefore, we have: \[\begin{eqnarray} \bnabla^2 \mathbf{A} &=& -\mu_0 \mathbf{J} \label{eq:b_curl_j_a_eps_2}. \end{eqnarray}\]
Biot-Savart Law
We can solve this equation by using the Green’s function for the Laplacian. The Green’s function for the Laplacian is given by: \[\begin{eqnarray} G(\mathbf{r},\mathbf{r}') &=& \frac{1}{4\pi |\mathbf{r}-\mathbf{r}'|} \label{eq:green_function}. \end{eqnarray}\] In order to convince ourselves that this is the correct Green’s function, we can check that it satisfies the following equation: \[\begin{eqnarray} \bnabla^2 G(\mathbf{r},\mathbf{r}') &=& -\delta(\mathbf{r}-\mathbf{r}') \label{eq:green_function_eq}. \end{eqnarray}\] The defining property of the delta function is that it is zero everywhere except at the origin, where it is infinite. And also that the integral of the delta function over all space is one. Let’s check \(r\neq r'\) behaviour of the Green’s function: \[\begin{eqnarray} \bnabla^2 G(\mathbf{r},\mathbf{r}') &=& \bnabla^2 \frac{1}{4\pi |\mathbf{r}-\mathbf{r}'|} =\frac{1}{4\pi} \bnabla \cdot \left( \frac{\mathbf{r}-\mathbf{r}'}{|\mathbf{r}-\mathbf{r}'|^3} \right) = \frac{1}{4\pi} \left( \frac{\bnabla\cdot \mathbf{r} |\mathbf{r}-\mathbf{r}'|^3 - 3 |\mathbf{r}-\mathbf{r}'|^3}{|\mathbf{r}-\mathbf{r}'|^6} \right)=0 \label{eq:green_function_eq_2}. \end{eqnarray}\] Let’s check the that it integrates to one: \[\begin{eqnarray} \int d^3 \mathbf{r} \bnabla^2 G(\mathbf{r},0) &=& \int d^3 \mathbf{r} \frac{1}{4\pi} \bnabla \cdot \left( \frac{\mathbf{r}}{|\mathbf{r}|^3} \right) =\frac{1}{4\pi} \int d\mathbf{S} \cdot \mathbf{r} \frac{1}{r^3} =\frac{1}{4\pi} \int d\Omega=1 \label{eq:green_function_eq_3}, \end{eqnarray}\] which confirms that the Green’s function is correct. Inserting this into Eq. \(\ref{eq:b_curl_j_a_eps_2}\) we get: \[\begin{eqnarray} \mathbf{A}(\mathbf{r}) &=& \frac{\mu_0}{4\pi} \int d^3 \mathbf{r}' \frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} \label{eq:a_from_j} \end{eqnarray}\]
We will make use of the following vector identity: \[\begin{eqnarray} \bnabla\times\frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r}- \mathbf{r}'|}&=&\mathbf{J}\times\frac{\mathbf{r}- \mathbf{r}'}{|\mathbf{r}- \mathbf{r}'|^3} \label{eq:gradofrinvcc}. \end{eqnarray}\]
Once we have the vector potential, we can find the magnetic field by taking the curl of it:
\[\begin{eqnarray} \mathbf{B}(\mathbf{r}) &=& \bnabla\times \mathbf{A}=\frac{\mu_0 }{4\pi}\int d^3 \mathbf{r}'\frac{ \mathbf{J}(\mathbf{r}') \times ( \mathbf{r}- \mathbf{r}')}{ ( \mathbf {r}- \mathbf {r}')^3}, \label{eq:biotsavartlaw} \end{eqnarray}\] which is the Biot-Savart law.
When the current is confined to a compact line, as in Figure 1, the volume integral can be replaced by a line integral: \[\begin{eqnarray} \mathbf{B}(\mathbf{r}) &=& \frac{\mu_0 I}{4\pi}\int \frac{ d\mathbf{\ell} \times ( \mathbf{r}- \mathbf{r}')}{ ( \mathbf {r}- \mathbf {r}')^3}. \label{eq:biotsavartlawfin} \end{eqnarray}\]