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This paper explores canonical transformations in classical mechanics as powerful
tools for simplifying complex dynamical problems. Beginning with a non-standard
Lagrangian ℒ = √𝑞2 + ̇𝑞2 − 1

2𝑞2, we demonstrate how transforming from the La-
grangian to Hamiltonian formalism enables more tractable analysis of the equations
of motion. We first develop the theoretical foundations through variational calcu-
lus and the Euler-Lagrange equation, examining how the principle of least action
leads to the fundamental equations governing classical systems.
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Consider the following, unusual Lagrangian:

ℒ = √𝑞2 + ̇𝑞2 − 1
2𝑞2. (1)

We are going to try to solve the equations of motion for this Lagrangian. This is going
to be a long-winded answer. We will argue that moving to the Hamiltonian picture makes
our life much easier. Let us first build the bridge between the Lagrangian and Hamiltonian
represetations, which is done via the Legendre transforms. We will discuss that the problem can
be further simplified by shuffling the coordinates, which will take as to tour through canonical
transformations and Poisson brackets. Let’ get started with some variational calculus.

Lagrangian representation

A functional can be considered as an operation that takes in a function and returns a number.
The most familiar functional is integration with fixed limits. It takes in 𝑓 and returns 𝒮 =
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∫𝑏
𝑎 𝑓(𝑡)𝑑𝑡, which is just a number. In a typical mechanics problem, the functional 𝒮 will be of

the form:

𝒮 = ∫
𝑡1

𝑡0

ℒ(𝑞, ̇𝑞)𝑑𝑡, (2)

where ℒ is the Lagrangian, and 𝑞 = 𝑞(𝑡) is the generalized coordinate with ̇𝑞 = 𝑑𝑞
𝑑𝑡 . Let’s

assume that we have a function 𝑞(𝑡) that gives the minimum value for 𝒮. If we fiddle 𝑞
around the optimal function by a small amount 𝛼𝜂(𝑡), i.e., 𝑞(𝑡) → 𝑞(𝑡) + 𝛼𝜂(𝑡), where 𝜂(𝑡)
is an arbitrary function and 𝛼 is a small number, then the change in 𝒮 should be 0. This is
analogous to requiring that the derivative of a function 𝑓 should vanish at a local extremum ,
that is: 𝑑𝑓(𝑡)

𝑑𝑡 |𝑡=𝑡∗ = 0. Rigorously speaking [1], we can define the following functional

𝒮(𝛼) = ∫
𝑡1

𝑡0

ℒ(𝑞 + 𝛼𝜂, ̇𝑞 + 𝛼 ̇𝜂)𝑑𝑡, (3)

and require that

𝑑
𝑑𝛼𝒮(𝛼)∣

𝛼=0
= 0. (4)

Consider a problem where the end points are specified. This implies that we are not free to
wiggle 𝑞 at the end points 𝑡0 and 𝑡1, i.e.,

𝜂(𝑡0) = 𝜂(𝑡1) = 0. (5)

The variation is illustrated in Figure 1.

Figure 1: The orange curve 𝑞(𝑡), which is unknown at the moment, gives the minimum value
for the functional 𝒮. The green curve represents the new curve with random defor-
mations around 𝑞(𝑡). The variation 𝜂(𝑡) must vanish at the end points since the
values of 𝑞 are fixed at these points.
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Keeping the boundary conditions in Eq. 5 in mind, let us calculate Eq. 4:

𝑑
𝑑𝛼𝒮(𝛼)∣

𝛼=0
= ∫

𝑡1

𝑡0

𝑑
𝑑𝛼ℒ(𝑞 + 𝛼𝜂, ̇𝑞 + 𝛼 ̇𝜂(𝑡))∣

𝛼=0
𝑑𝑡 = ∫

𝑡1

𝑡0

[ 𝜕
𝜕𝑞 ℒ(𝑞, ̇𝑞)𝜂 + 𝜕

𝜕 ̇𝑞 ℒ(𝑞, ̇𝑞)𝑑𝜂
𝑑𝑡 ] 𝑑𝑡

= ∫
𝑡1

𝑡0

[ 𝜕
𝜕𝑞 ℒ(𝑞, ̇𝑞)𝜂 + 𝑑

𝑑𝑡 ( 𝜕
𝜕 ̇𝑞 ℒ(𝑞, ̇𝑞)𝜂) − 𝑑

𝑑𝑡 ( 𝜕
𝜕 ̇𝑞 ℒ(𝑞, ̇𝑞)) 𝜂] 𝑑𝑡

= ∫
𝑡1

𝑡0

[𝜕ℒ(𝑞, ̇𝑞)
𝜕𝑞 − 𝑑

𝑑𝑡 (𝜕ℒ(𝑞, ̇𝑞)
𝜕 ̇𝑞 )] 𝜂𝑑𝑡 +

�������𝜕ℒ(𝑞, ̇𝑞)
𝜕 ̇𝑞 𝜂∣

𝑡1

𝑡0

= ∫
𝑡1

𝑡0

[𝜕ℒ(𝑞, ̇𝑞)
𝜕𝑞 − 𝑑

𝑑𝑡 (𝜕ℒ(𝑞, ̇𝑞)
𝜕 ̇𝑞 )] 𝜂𝑑𝑡, (6)

where the boundary terms vanish due to the constraints in Eq. 5. Since 𝜂 is an arbitrary
function, in order to set this equation to 0, we require the following:

𝜕ℒ
𝜕𝑞 − 𝑑

𝑑𝑡 (𝜕ℒ
𝜕 ̇𝑞 ) = 0, (7)

which is known as the Euler-Lagrange equation.

Gauge invariance

Since the action in Eq. 2 is defined as an integral with fixed end points, adding a total
derivative to the integrand, i.e., the Lagrangian, will only add a constant to the action. Since
the equations of motion are derived by variation, constants added to the action will not change
the result. To quantify this, let us consider the transformed Lagrangian:

̃ℒ = ℒ + 𝑑
𝑑𝑡 [Λ(𝑞, 𝑡)] = ℒ + 𝜕Λ(𝑞, 𝑡)

𝜕𝑞 ̇𝑞 + 𝜕Λ(𝑞, 𝑡)
𝜕𝑡 (8)

for any differentiable function Λ(𝑞, 𝑡). Now let’s take ℒ = ̃ℒ − 𝑑
𝑑𝑡 [Λ(𝑞, 𝑡)] and insert that into

Eq. 7 to get

𝑑
𝑑𝑡 (𝜕 ̃ℒ

𝜕 ̇𝑞 ) − 𝜕 ̃ℒ
𝜕𝑞 = 𝑑

𝑑𝑡 (𝜕ℒ
𝜕 ̇𝑞 ) − 𝜕ℒ

𝜕𝑞 + 𝜕2Λ(𝑞, 𝑡)
𝜕𝑡𝜕𝑞 − 𝜕2Λ(𝑞, 𝑡)

𝜕𝑡𝜕𝑞 = 𝑑
𝑑𝑡 (𝜕ℒ

𝜕 ̇𝑞 ) − 𝜕ℒ
𝜕𝑞 = 0, (9)

which shows that although ̃ℒ and ℒ are totally different functions, they satisfy the same
differential equation yielding the same equation of motion.
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Hamiltonian representation

We first define the conjugate momenta 𝑝 as

𝑝 ≡ 𝜕ℒ
𝜕 ̇𝑞 , (10)

and the Legendre transform as

ℋ(𝑞, 𝑝) = 𝑝 ̇𝑞 − ℒ(𝑞, ̇𝑞), (11)

which will enable us to move from the independent variables {𝑞, ̇𝑞} to {𝑞, 𝑝}. We can now
compute the differential of this new quantity ℋ by expanding out the right hand side as

𝑑ℋ(𝑞, 𝑝) = 𝑑𝑝 ̇𝑞 + 𝑝 𝜕 ̇𝑞
𝜕𝑝𝑑𝑝 + 𝑝 𝜕 ̇𝑞

𝜕𝑞 𝑑𝑞 − 𝜕ℒ
𝜕𝑞 𝑑𝑞 − 𝜕ℒ

𝜕 ̇𝑞
𝜕 ̇𝑞
𝜕𝑝𝑑𝑝 − 𝜕ℒ

𝜕 ̇𝑞
𝜕 ̇𝑞
𝜕𝑞 𝑑𝑞

= 𝑑𝑝 [ ̇𝑞 + 𝜕 ̇𝑞
𝜕𝑝������

(𝑝 − 𝜕ℒ
𝜕 ̇𝑞 )] + 𝑑𝑞 [−𝜕ℒ

𝜕𝑞 − 𝜕 ̇𝑞
𝜕𝑞������

(𝜕ℒ
𝜕 ̇𝑞 − 𝑝)] , (12)

where the terms in the parenthesis are zero due to the definition in Eq. 10 . Therefore we
get:

𝑑ℋ(𝑞, 𝑝) = 𝑑𝑝 ̇𝑞 − 𝑑𝑞 𝜕ℒ
𝜕𝑞 = 𝑑𝑝 ̇𝑞 − 𝑑𝑞 ̇𝑝. (13)

We can also write the 𝑑ℋ(𝑞, 𝑝) in terms of its functional arguments:

𝑑ℋ(𝑞, 𝑝) = 𝑑𝑞 𝜕ℋ
𝜕𝑞 + 𝑑𝑝𝜕ℋ

𝜕𝑝 . (14)

Matching the coefficients of the differentials in Eqs. 13 and 14, we arrive at the Hamitonian
equations of motions:

̇𝑞 = 𝜕ℋ
𝜕𝑝 , and ̇𝑝 = −𝜕ℋ

𝜕𝑞 , (15)

and this is how one moves from the Lagrangian equations to Hamiltonian equations via the
Legendre transform.

Poisson brackets

The Poisson brackets are discussed in the advanced classical mechanics classes, which ironically
comes later in the curriculum after quantum physics classes. When the commutator relations
in quantum mechanics is discussed, they are motivated as an extension of the Poisson brackets
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as a link between classical mechanics and quantum mechanics. I will reproduce the derivations
from [2] with slightly different notation.

We will take two continuous functions, 𝐹 and 𝐺, which are functions of the generalized coor-
dinates (𝑝𝑖, 𝑞𝑖) and possibly the time 𝑡, and then define the Poisson bracket operation on them
as follows:

{𝐹 , 𝐺}𝑞𝑝 ≡ {𝐹, 𝐺} = (𝜕𝐹
𝜕𝑞𝑖

𝜕𝐺
𝜕𝑝𝑖

− 𝜕𝐹
𝜕𝑝𝑖

𝜕𝐺
𝜕𝑞𝑖

) , (16)

where the sum over the repeating index is implied, and we dropped the undescore 𝑞𝑝
from the bracket for simplicity. Let us introduce another continuous function 𝑀 to write a
few key features of the bracket.

i. Poisson bracket is antisymmetric:

{𝐹 , 𝐺} ≡ −{𝐺, 𝐹} ⟹ {𝐹, 𝐹} = 0. (17)
(18)

ii. Poisson bracket is linear:

{𝐺, 𝐹 + 𝑀} = {𝐺, 𝐹} + {𝐺, 𝑀}. (19)

iii. Poisson bracket follows the Leibniz rules of derivatives:

{𝐺, 𝐹𝑀} ≡ {𝐺, 𝐹}𝑀 + 𝐹{𝐺, 𝑀}. (20)

iv. Poisson bracket satisfies the Jacobi identity:

{𝐹 , {𝐺, 𝑀}} + {𝐺, {𝑀, 𝐹}} + {𝑀{𝐹, 𝐺}} = 0. (21)

We can try something interesting and take 𝐹 = 𝑞𝑘 and 𝐺 = 𝑞𝑙 and see what the Poisson
bracket returns:

{𝑞𝑘, 𝑞𝑙} = 𝜕𝑞𝑘
𝜕𝑞𝑖

𝜕𝑞𝑙
𝜕𝑝𝑖

− 𝜕𝑞𝑙
𝜕𝑝𝑖

𝜕𝑞𝑘
𝜕𝑞𝑖

= 0. (22)

We can also try 𝐹 = 𝑝𝑘 and 𝐺 = 𝑝𝑙:

{𝑝𝑘, 𝑝𝑙} = 𝜕𝑝𝑘
𝜕𝑞𝑖

𝜕𝑝𝑙
𝜕𝑝𝑖

− 𝜕𝑝𝑙
𝜕𝑝𝑖

𝜕𝑝𝑘
𝜕𝑞𝑖

= 0. (23)

Let us finally try the cross term 𝐹 = 𝑞𝑘 and 𝐺 = 𝑝𝑙:

{𝑞𝑘, 𝑝𝑙} = 𝜕𝑞𝑘
𝜕𝑞𝑖

𝜕𝑝𝑙
𝜕𝑝𝑖

− 𝜕𝑝𝑙
𝜕𝑝𝑖

𝜕𝑞𝑘
𝜕𝑞𝑖

= 𝛿𝑘𝑖𝛿𝑙𝑖 = 𝛿𝑘𝑙. (24)
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Since they are based on the canonical variables themselves, these brackets are called the
fundamental Poisson brackets. The only nontrivial bracket is the one in Eq. 24, and it is
nonzero when the selected momenta is the conjugate variable of the selected coordinate, i.e.,

{𝑞𝑘, 𝑝𝑘}𝑝𝑞 = 1. (25)
The reader with sharp eyes will notice that this is similar to the commutation relation between
𝑥 and 𝑝 in quantum mechanics.

Invariance

Let us consider a change of variables from (𝑞, 𝑝) to a new set (𝑄(𝑞, 𝑝, 𝑡), 𝑃 (𝑞, 𝑝, 𝑡)). We can
rewrite Eq. 16 as:

{𝐹 , 𝐺}𝑞𝑝 = 𝜕𝐹
𝜕𝑞𝑖

𝜕𝐺
𝜕𝑝𝑖

− 𝜕𝐹
𝜕𝑝𝑖

𝜕𝐺
𝜕𝑞𝑖

= ( 𝜕𝐹
𝜕𝑄𝑗

𝜕𝑄𝑗
𝜕𝑞𝑖

+ 𝜕𝐹
𝜕𝑃𝑗

𝜕𝑃𝑗
𝜕𝑞𝑖

) 𝜕𝐺
𝜕𝑝𝑖

− ( 𝜕𝐹
𝜕𝑄𝑗

𝜕𝑄𝑗
𝜕𝑝𝑖

+ 𝜕𝐹
𝜕𝑃𝑗

𝜕𝑃𝑗
𝜕𝑝𝑖

) 𝜕𝐺
𝜕𝑞𝑖

= 𝜕𝐹
𝜕𝑄𝑗

(𝜕𝑄𝑗
𝜕𝑞𝑖

𝜕𝐺
𝜕𝑝𝑖

− 𝜕𝑄𝑗
𝜕𝑝𝑖

𝜕𝐺
𝜕𝑞𝑖

) + 𝜕𝐹
𝜕𝑃𝑗

(𝜕𝑃𝑗
𝜕𝑞𝑖

𝜕𝐺
𝜕𝑝𝑖

− 𝜕𝑃𝑗
𝜕𝑝𝑖

𝜕𝐺
𝜕𝑞𝑖

)

= 𝜕𝐹
𝜕𝑄𝑗

{𝑄𝑗, 𝐺}𝑞𝑝 + 𝜕𝐹
𝜕𝑃𝑗

{𝑃𝑗, 𝐺}𝑞𝑝 (26)

Let’s take 𝐺 = 𝑄𝑘, which will remove one of the terms since {𝑄𝑗, 𝑄𝑘; }𝑞𝑝 = 0. It will also
collapse the implied summation of 𝑗 since {𝑃𝑗, 𝑄𝑘}𝑞𝑝 = −𝛿𝑗𝑘 to yield:

{𝐹 , 𝑄𝑘}𝑞𝑝 = − 𝜕𝐹
𝜕𝑃𝑘

(27)

If we set 𝐺 = 𝑃𝑘, we get

{𝐹 , 𝑃𝑘}𝑞𝑝 = 𝜕𝐹
𝜕𝑄𝑘

. (28)

We take the results from Eqs. 27 and 28, relabel 𝐹 as 𝐺, 𝑘 as 𝑗 and insert them in to the last
line of Eq. 26 to show:

{𝐹 , 𝐺}𝑞𝑝 = 𝜕𝐹
𝜕𝑄𝑗

𝜕𝐺
𝜕𝑃𝑗

− 𝜕𝐹
𝜕𝑃𝑗

𝜕𝐺
𝜕𝑄𝑗

= {𝐹, 𝐺}𝑄𝑃 . (29)

This is pretty neat since we can drop the subscripts (𝑞, 𝑝) and (𝑄, 𝑃 ). This tells us that
the Poisson bracket is invariant under canonical transformation of canonical variables, or
equivalently, the transformations that leave the bracket unchanged are canonical.
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Transformation

The first advantage of the Hamiltonian representation is that it is first order in derivatives
compared to the Lagrangian case, which is second order. Furthermore, the Hamiltonian can
be transformed to further simplify the process to solve the equations of motion. Just like
any other transformation, we will move from the original coordinates, (𝑞, 𝑝), to a new set
(𝑄(𝑞, 𝑝, 𝑡), 𝑃 (𝑞, 𝑝, 𝑡)) so that the equations become easier to solve in the new space. We solve
them there and inverse transform back to the original variables. We will limit the transfor-
mations to the canonical ones, which preserve the canonical form of Hamilton’s equations of
motion given in Eq. 15. As we move from (𝑞, 𝑝) to (𝑄, 𝑃 ), ℋ moves to ℋ, and ℒ moves to ℒ.
We require

𝑄̇ = 𝜕ℋ(𝑄, 𝑃 , 𝑡)
𝜕𝑃 , and ̇𝑃 = −𝜕ℋ(𝑄, 𝑃 , 𝑡)

𝜕𝑄 . (30)

The least action principle in Eq. 4 for the original Lagrangian, ℒ can be expressed as:

𝛿𝑆 = 𝛿 ∫
𝑡2

𝑡1

ℒ(𝑞, ̇𝑞, 𝑡)𝑑𝑡 = 𝛿 ∫
𝑡2

𝑡1

[𝑝 ̇𝑞 − ℋ(𝑞, 𝑝, 𝑡)]𝑑𝑡 = 0. (31)

For the new Lagrangian, ℒ, the least action requirement reads:

𝛿𝑆 = 𝛿 ∫
𝑡2

𝑡1

ℒ(𝑄, 𝑄̇, 𝑡)𝑑𝑡 = 𝛿 ∫
𝑡2

𝑡1

[𝑃 𝑄̇ − ℋ(𝑄, 𝑃 , 𝑡)] 𝑑𝑡 = 0 (32)

But we showed earlier ℒ and ℒ must be related by the total time derivative of a gauge function
𝐹 such that

𝑑𝐹
𝑑𝑡 = ℒ − ℒ (33)

The generating function 𝐹 can be a function of the old and new canonical variables 𝑝, 𝑞, 𝑃 ,
𝑄 and 𝑡 which results in the following relation:

𝑝 ̇𝑞 − ℋ(𝑞, 𝑝, 𝑡) = [𝑃 𝑄̇ − ℋ(𝑄, 𝑃 , 𝑡)] + 𝑑𝐹
𝑑𝑡 . (34)

Let us look at various types of generating functions: 𝐹1(𝑞, 𝑄, 𝑡), 𝐹2(𝑞, 𝑃 , 𝑡), 𝐹3(𝑝, 𝑄, 𝑡), and
𝐹4(𝑝, 𝑃 , 𝑡) [2].
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𝐹 = 𝐹1(𝑞, 𝑄, 𝑡):

The total time derivative of 𝐹 = 𝐹1(𝑞, 𝑄, 𝑡) reads

𝑑𝐹(𝑞, 𝑄, 𝑡)
𝑑𝑡 = 𝜕𝐹1(𝑞, 𝑄, 𝑡)

𝜕𝑞 ̇𝑞 + 𝜕𝐹1(𝑞, 𝑄, 𝑡)
𝜕𝑄 𝑄̇ + 𝜕𝐹1(𝑞, 𝑄, 𝑡)

𝜕𝑡 . (35)

Inserting this into Eq. 34 gives

[𝑝 − 𝜕𝐹1(𝑞, 𝑄, 𝑡)
𝜕𝑞 ] ̇𝑞 − ℋ(𝑞, 𝑝, 𝑡) = [𝑃 + 𝜕𝐹1(𝑞, 𝑄, 𝑡)

𝜕𝑄 ] 𝑄̇ − ℋ(𝑄, 𝑃 , 𝑡) + 𝜕𝐹1(𝑞, 𝑄, 𝑡)
𝜕𝑡 . (36)

If we choose 𝐹1 as follows:

𝑝 = 𝜕𝐹1(𝑞, 𝑄, 𝑡)
𝜕𝑞 𝑃 = −𝜕𝐹1(𝑞, 𝑄, 𝑡)

𝜕𝑄 , (37)

we can cancel Legendre terms to get a simple transformation:

ℋ(𝑄, 𝑃 , 𝑡) = ℋ(𝑞, 𝑝, 𝑡) + 𝜕𝐹1(𝑞, 𝑄, 𝑡)
𝜕𝑡 . (38)

𝐹 = 𝐹2(𝑞, 𝑃 , 𝑡) − 𝑄𝑃 :

The total time derivative of 𝐹 = 𝐹2(𝑞, 𝑃 , 𝑡) − 𝑄𝑃 reads

𝑑𝐹
𝑑𝑡 = 𝜕𝐹2(𝑞, 𝑃 , 𝑡)

𝜕𝑞 ̇𝑞 + 𝜕𝐹2(𝑞, 𝑃 , 𝑡)
𝜕𝑃

̇𝑃 − 𝑃 𝑄̇ − ̇𝑃𝑄 + 𝜕𝐹2(𝑞, 𝑃 , 𝑡)
𝜕𝑡 (39)

Inserting this into Eq. 34 gives

(𝑝 − 𝜕𝐹2(𝑞, 𝑃 , 𝑡)
𝜕𝑞 ) ̇𝑞 − ℋ(𝑞, 𝑝, 𝑡) = 𝑃 𝑄̇ − 𝑃 𝑄̇ + [𝜕𝐹2(𝑞, 𝑃 , 𝑡)

𝜕𝑃 − 𝑄] ̇𝑃 − ℋ(𝑄, 𝑃 , 𝑡) + 𝜕𝐹2(𝑞, 𝑃 , 𝑡)
𝜕𝑡 . (40)

If we choose 𝐹2 as follows:

𝑝 = 𝜕𝐹2(𝑞, 𝑃 , 𝑡)
𝜕𝑞 𝑄 = 𝜕𝐹2(𝑞, 𝑃 , 𝑡)

𝜕𝑃 , (41)

we simply get:

ℋ(𝑄, 𝑃 , 𝑡) = ℋ(𝑞, 𝑝, 𝑡) + 𝜕𝐹2(𝑞, 𝑃 , 𝑡)
𝜕𝑡 (42)
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𝐹 = 𝐹3(𝑝, 𝑄, 𝑡) + 𝑞𝑝:

The total time derivative of 𝐹 = 𝐹3(𝑝, 𝑄, 𝑡) + 𝑞𝑝 reads

𝑑𝐹
𝑑𝑡 = 𝜕𝐹3(𝑝, 𝑄, 𝑡)

𝜕𝑝 ̇𝑝 + 𝜕𝐹3(𝑝, 𝑄, 𝑡)
𝜕𝑄 𝑄̇ + ̇𝑞𝑝 + 𝑞 ̇𝑝 + 𝜕𝐹3(𝑝, 𝑄, 𝑡)

𝜕𝑡 (43)

Inserting this into Eq. 34 gives

− [𝑞 + 𝜕𝐹3(𝑝, 𝑄, 𝑡)
𝜕𝑝 ] ̇𝑝 − ℋ(𝑞, 𝑝, 𝑡) = [𝑃 + 𝜕𝐹3(𝑝, 𝑄, 𝑡)

𝜕𝑄 ] 𝑄̇ − ℋ(𝑄, 𝑃 , 𝑡) + 𝜕𝐹3(𝑝, 𝑄, 𝑡)
𝜕𝑡 (44)

If we choose 𝐹3 as follows:

𝑞 = −𝜕𝐹3(𝑝, 𝑄, 𝑡)
𝜕𝑝 𝑃 = −𝜕𝐹3(𝑝, 𝑄, 𝑡)

𝜕𝑄 , (45)

we end with the required transformation

ℋ(𝑄, 𝑃 , 𝑡) = ℋ(𝑞, 𝑝, 𝑡) + 𝜕𝐹3(𝑝, 𝑄, 𝑡)
𝜕𝑡 (46)

𝐹 = 𝐹4(𝑝, 𝑃 , 𝑡) + 𝑞𝑝 − 𝑄𝑃 :

The total time derivative of 𝐹 = 𝐹4(𝑝, 𝑃 , 𝑡) + 𝑞𝑝 − 𝑄𝑃 reads

𝑑𝐹
𝑑𝑡 = 𝜕𝐹4(𝑝, 𝑃 , 𝑡)

𝜕𝑝 ̇𝑝 + 𝜕𝐹4(𝑝, 𝑃 , 𝑡)
𝜕𝑃 ̇𝑝 + ̇𝑞𝑝 + 𝑞 ̇𝑝 − 𝑄̇𝑃 − 𝑄 ̇𝑃 + 𝜕𝐹4(𝑝, 𝑃 , 𝑡)

𝜕𝑡 (47)

Inserting this into Eq. 34 gives

− [𝑞 + 𝜕𝐹4(𝑝, 𝑃 , 𝑡)
𝜕𝑝 ] ̇𝑝 − ℋ(𝑞, 𝑝, 𝑡) = [𝜕𝐹4(𝑝, 𝑃 , 𝑡)

𝜕𝑃 − 𝑄] ̇𝑃 − ℋ(𝑄, 𝑃 , 𝑡) + 𝜕𝐹4(𝑝, 𝑃 , 𝑡)
𝜕𝑡 (48)

If we choose 𝐹4 as follows:

𝑞 = −𝜕𝐹4(𝑝, 𝑃 , 𝑡)
𝜕𝑝 𝑄 = 𝜕𝐹4(𝑝, 𝑃 , 𝑡)

𝜕𝑃 , (49)

we get the required transformation

ℋ(𝑄, 𝑃 , 𝑡) = ℋ(𝑞, 𝑝, 𝑡) + 𝜕𝐹4(𝑝, 𝑃 , 𝑡)
𝜕𝑡 . (50)

The four generating functions we looked at are related by Legendre transformations. The
properties of the generating functions are summarized in Table 1[2].

Table 1: Canonical transformation generating functions
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Generating function

Generating function derivatives

Trivial special examples

𝐹 = 𝐹1(𝑞, 𝑄, 𝑡)
𝑝𝑖 = 𝜕𝐹1

𝜕𝑞𝑖
𝑃𝑖 = − 𝜕𝐹1

𝜕𝑄𝑖

𝐹1 = 𝑞𝑖𝑄𝑖 𝑄𝑖 = 𝑝𝑖 𝑃𝑖 = −𝑞𝑖

𝐹 = 𝐹2(𝑞, 𝑃 , 𝑡) − 𝑄𝑃
𝑝𝑖 = 𝜕𝐹2

𝜕𝑞𝑖
𝑄𝑖 = 𝜕𝐹2

𝜕𝑃𝑖

𝐹2 = 𝑞𝑖𝑃𝑖 𝑄𝑖 = 𝑞𝑖 𝑃𝑖 = 𝑝𝑖

𝐹 = 𝐹3(𝑝, 𝑄, 𝑡) + 𝑞𝑝
𝑞𝑖 = −𝜕𝐹3

𝜕𝑝𝑖
𝑃𝑖 = − 𝜕𝐹3

𝜕𝑄𝑖

𝐹3 = 𝑝𝑖𝑄𝑖 𝑄𝑖 = −𝑞𝑖 𝑃𝑖 = −𝑝𝑖

𝐹 = 𝐹4(𝑝, 𝑃 , 𝑡) + 𝑞𝑝 − 𝑄𝑃
𝑞𝑖 = −𝜕𝐹4

𝜕𝑝𝑖
𝑄𝑖 = 𝜕𝐹4

𝜕𝑃𝑖

𝐹4 = 𝑝𝑖𝑃𝑖 𝑄𝑖 = 𝑝𝑖 𝑃𝑖 = −𝑞𝑖

The equation of motion

Let’s go back to the original problem with the Lagrangian in Eq. 1: We first define the
conjugate momenta 𝑝 as

𝑝 ≡ 𝜕ℒ
𝜕 ̇𝑞 = ̇𝑞

√ ̇𝑞2 + 𝑞2
⟹ ̇𝑞 𝑝𝑞

√1 − 𝑝2
. (51)

Insert this back in Eq. 1 and rewrite it slightly:

ℒ = √𝑞2 + ̇𝑝2

1 − 𝑝2 − 1
2𝑞2 = 𝑞

√1 − 𝑝2
− 1

2𝑞2. (52)

The corresponding Hamiltonian becomes:

ℋ(𝑞, 𝑝) = 𝑝 ̇𝑞 − ℒ(𝑞, ̇𝑞) = −𝑞√1 − 𝑝2 + 1
2𝑞2, (53)
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Let’s assume that we can come up with a transformation 𝑞 → 𝑄 such that the new Hamiltonian,
ℋ, becomes that of a harmonic oscillator:

ℋ(𝑄, 𝑝) = 𝛼
2 𝑄2 + 𝛽

2 𝑝2 + 𝛾, (54)

where 𝛼, 𝛽, and 𝛾 are to be calculated. We want to preserve the canonical form of the
Hamiltonian equations and require:

𝜕ℋ
𝜕𝑄 = − ̇𝑝 = 𝜕ℋ

𝜕𝑞 , (55)

which implies

𝑄 = −√1 − 𝑝2 + 𝑞
𝛼 . (56)

Putting this back in Eq. 54, we get

ℋ = 𝛼
2 (−√1 − 𝑝2 + 𝑞

𝛼 )
2

+ 𝛽
2 𝑝2 + 𝛾 = 1

2𝛼 (1 − 𝑝2 + 𝑞2 − 2𝑞√1 − 𝑝2) + 𝛽
2 𝑝2 + 𝛾. (57)

If we set 𝛼 = 𝛽 = 1, and 𝛾 = −1
2 , we get:

ℋ(𝑄, 𝑝) = 1
2𝑄2 + 1

2𝑝2 − 1
2. (58)

The equations to solve are:

𝑄̈ + 𝑄 = 0, and ̈𝑝 + 𝑝 = 0. (59)

The solution are simlly the harmonic functions:

𝑄(𝑡) = 𝑄0 cos 𝑡 + 𝑄̇0 sin 𝑡, and 𝑝(𝑡) = 𝑝0 cos 𝑡 + ̇𝑝0 sin 𝑡, (60)

where 𝑄0, 𝑄̇0, 𝑝0, and ̇𝑝0 are the initial conditions. Reverting back to the original parameters
we get:

𝑞(𝑡) = (𝑞0 − √1 − 𝑝2
0) cos 𝑡 + ( ̇𝑞0 + ̇𝑝0𝑝0

√1 − 𝑝2
0

) sin 𝑡 + √1 − (𝑝0 cos 𝑡 + ̇𝑝0 sin 𝑡)2, (61)

and that is the solution we have been looking for.

[1] L. D. Elsgolc, Calculus of variations. Dover Publications, 2007.
[2] “Canonical Transformations in Hamiltonian Mechanics.” University of Rochester, 2021.
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