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We dive into calculus of variations to calculate the shape of a rope fixed in one
end and free to slide on the other. Starting with the classic catenary problem, we
derive the Euler-Lagrange equation and show how the familiar hyperbolic cosine
solution emerges from energy minimization principles. The real challenge comes
when one end is free to slide along a vertical post, introducing movable boundary
conditions.

blog: https://tetraquark.vercel.app/posts/catenary/?src=pdf

email: quarktetra@gmail.com

Introduction

You must have seen ropes and chains hanging from two posts. Ever wondered what kind of
shape they take? A first guess would be a parabola or a higher order polynomial, but that
would be wrong. It turns out to be a cosh scaled properly to pass through the end points and
have the correct length. The rope sags into a shape that minimizes its total potential energy.
Calculus of variations [1] is the study of such problems, and it forms the mathematical
foundations of classical and modern physics.

This would have been one of many posts you would find elsewhere if the title did not include
“with a sliding end”. What we want to describe is a case where one end of the rope is anchored,
and the other end is free to slide down the post. You can think of it being tied to a ring that
can freely slide up and down. Such problems are known as variational problems with movable
boundaries, and they are much richer than plain-old-fixed-end problems. I will set the stage
by starting with the fixed ends case, and later move to the sliding-end problem. Just for
entertainment, I also built a simple jig to physically verify that this is not just mathematical
wizardry.
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Functionals

A functional can be considered as an operation that takes in a function and returns a number.
The most familiar functional is integration with fixed limits. It takes in 𝑓(𝑥) and spits out
∫𝑏
𝑎 𝑓(𝑥)𝑑𝑥, which is just a number. Integration happens naturally in physics. For example,

consider a rope hanging from two anchor points as illustrated in Figure 1.

Figure 1: Illustration of a rope or chain hanging from two anchor points. The differential
length on the rope is 𝑑𝑠 = √𝑑𝑥2 + 𝑑𝑦2. The shape of the rope will be such that its
potential energy is minimized.

The potential energy of the differential length 𝑑𝑠 is 𝑑𝑔 𝑦(𝑥)𝑑𝑠, where 𝑑 is the mass density
of the rope, and 𝑔 is the gravitational acceleration. We can compute the potential energy by
integrating over the length to get v=d g ∝ ∫𝑏

𝑎 𝑦(𝑥)𝑑𝑠, where 𝑑𝑠 = √𝑑𝑥2 + 𝑑𝑦2 = √1 + 𝑦′2𝑑𝑥.
This is also how 𝑦′ ≡ 𝜕𝑦

𝑑𝑥 naturally shows up is such problems.

Variational calculus

In a generic case we will have the functional 𝑣 of this form:

𝑣 = ∫
𝑥1

𝑥0

L (𝑥, 𝑦, 𝑦′)𝑑𝑥, (1)

where L is the function of interest [more on that later]. Let’s assume that we have a function
𝑦(𝑥) that gives the minimum value for 𝑣. If we fiddle 𝑦 around the optimal function by a small
amount 𝛼𝜂(𝑥), i.e., 𝑦(𝑥) → 𝑦(𝑥) + 𝛼𝜂(𝑥), where 𝜂(𝑥) is an arbitrary function and 𝛼 is a small
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number, then the change in 𝑣 should be 0. This is analogous to requiring that the derivative
should vanish at a local extremum of the function, that is: 𝑑𝑓(𝑥)

𝑑𝑥 |𝑥=𝑥∗ = 0. Rigorously speaking,
we can define the following functional

𝑣(𝛼) = ∫
𝑥1(𝛼)

𝑥0(𝛼)
L (𝑥, 𝑦 + 𝛼𝜂, 𝑦′ + 𝛼𝜂′)𝑑𝑥, (2)

and require that

𝑑𝑣(𝛼)
𝑑𝛼 ∣

𝛼=0
= 0. (3)

How we will proceed will depend on the conditions we impose that the end points 𝑥0 and 𝑥1.

Both ends fixed

Consider a problem where the end points are specified. This implies that we are not free to
wiggle 𝑦 at the end points 𝑥0 and 𝑥1, i.e.,

𝜂(𝑥0) = 𝜂(𝑥1) = 0. (4)

The variation is illustrated in Figure 2.

Figure 2: The orange curve 𝑦(𝑥), which is unknown at the moment, gives the minimum value
for the functional S . The green curve represents the new curve with random defor-
mations around 𝑦(𝑥). The variation 𝜂(𝑥) must vanish at the end points since the
values of 𝑞 are fixed at these points.
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Keeping the boundary conditions in Eq. 4 in mind, let us calculate Eq. 3:

𝑑𝑣(𝛼)
𝑑𝛼 ∣

𝛼=0
= ∫

𝑥1

𝑥0

𝑑
𝑑𝛼L (𝑥, 𝑦 + 𝛼𝜂, 𝑦′ + 𝛼𝜂′(𝑥))∣

𝛼=0
𝑑𝑥

= ∫
𝑥1

𝑥0

[ 𝜕
𝜕𝑦L (𝑥, 𝑦, 𝑦′)𝜂 + 𝜕

𝜕𝑦′ L (𝑥, 𝑦, 𝑦′)𝑑𝜂
𝑑𝑥] 𝑑𝑥

= ∫
𝑥1

𝑥0

[ 𝜕
𝜕𝑦L (𝑥, 𝑦, 𝑦′)𝜂 + 𝑑

𝑑𝑥 ( 𝜕
𝜕𝑦′ L (𝑥, 𝑦, 𝑦′)𝜂) − 𝑑

𝑑𝑥 ( 𝜕
𝜕𝑦′ L (𝑥, 𝑦, 𝑦′)) 𝜂] 𝑑𝑥

= ∫
𝑥1

𝑥0

[𝜕L

𝜕𝑦 − 𝑑
𝑑𝑥 (𝜕L

𝜕𝑦′ )] 𝜂𝑑𝑥 + 𝜕L

𝜕𝑦′ 𝜂∣
𝑥1

𝑥0

= ∫
𝑥1

𝑥0

[𝜕L

𝜕𝑦 − 𝑑
𝑑𝑥 (𝜕L

𝜕𝑦′ )] 𝜂𝑑𝑥, (5)

where the boundary terms become 0 due to the constraints in Eq. 4. Since 𝜂 is an arbitrary
function, in order to set this equation to 0, we require the following:

𝜕L

𝜕𝑦 − 𝑑
𝑑𝑥 (𝜕L

𝜕𝑦′ ) = 0. (6)

Equation 6 is known as the Euler-Lagrange equation and the function L is called the La-
grangian. In the case of the hanging rope, we have

L = 𝑑𝑔𝑦√1 + 𝑦′2. (7)

We can plug this into Eq. 6 and solve the resulting differential equation for 𝑦(𝑥). However,
it is easy to see that it will be a second order differential equation. It won’t be too hard to
solve, but we can do better than that. The crucial observation is that L has no explicit 𝑥
dependence, i.e., 𝜕L

𝜕𝑥 = 0. This means the total derivative of L can be written as:

𝑑L

𝑑𝑥 = 𝜕L

𝜕𝑥 + 𝜕L

𝜕𝑦 𝑦′ + 𝜕L

𝜕𝑦′ 𝑦″ =
�
��

𝜕L

𝜕𝑥 + 𝜕L

𝜕𝑦 𝑦′ + 𝜕L

𝜕𝑦′ 𝑦″ = 𝜕L

𝜕𝑦 𝑦′ + 𝜕L

𝜕𝑦′ 𝑦″. (8)

We can create these terms out of the Eq. 6 if we multiply it with 𝑦′:

𝑑L

𝜕𝑦 𝑦′ − 𝑑
𝑑𝑥 (𝑑L

𝜕𝑦′ ) 𝑦′ = 𝑑L

𝜕𝑦 𝑦′ − 𝑑
𝑑𝑥 (𝑑L

𝜕𝑦′ 𝑦′) + 𝑑L

𝜕𝑦″ 𝑦″ = 𝑑
𝑑𝑥 (L − 𝑑L

𝜕𝑦′ 𝑦′) = 0, (9)

which means that

L − 𝑑L

𝜕𝑦′ 𝑦′ = 𝐶. (10)

This reduces the order of the differential equation from two to one! Inserting the expression
for L into Eq. 7 we get:

𝑦√1 + 𝑦′2 − 𝑦𝑦′2
√1 + 𝑦′2 = 𝑦

√1 + 𝑦′2 = 𝐶. (11)
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It is best to solve the equation in a parametric form by defining 𝑦′ = sinh 𝑡

𝑦 = 𝐶√1 + 𝑦′2 = 𝐶√1 + sinh2 𝑡 = 𝐶 cosh 𝑡. (12)

We can extract 𝑥(𝑡) as follows:

𝑑𝑦
𝑑𝑡 = 𝐶 sinh 𝑡 = 𝑑𝑦

𝑑𝑥
𝑑𝑥
𝑑𝑡 = sinh 𝑡𝑑𝑥

𝑑𝑡 → 𝑑𝑥
𝑑𝑡 = 𝐶, (13)

which gives 𝑥 = 𝐶𝑡 + 𝐷. We can eliminate 𝑡 in favor of 𝑥: 𝑡 = 𝑥−𝐷
𝐶 and put it back it 𝑦(𝑡) to

get

𝑦(𝑥) = 𝐶 cosh (𝑥 − 𝐷
𝐶 ) . (14)

𝐶 and 𝐷 are the integration constants and they can be fixed by requiring that 𝑦(𝑥0) = 𝑦0 and
𝑦(𝑥0) = 𝑦1, i.e., the anchor points are fixed.

If you think about this practically, you will notice a problem. You have a rope and you can
decide on the anchor points as you wish. That completely fixes all the constants. How about
the length of the rope, though? A longer rope will definitely have a different shape than that
of a shorter one. There should have been another parameter in our solution so that it can be
adjusted to give the correct length. That is why we have to introduce a Lagrange multiplier
to address variation problems with constraints. In this case the constraint is that the solution
should give the correct length: ∫𝑥0

𝑥0
𝑑𝑠 = 𝐿, 𝐿 being the length of the rope. In order to enforce

this requirement we revise L to L − 𝜆 (∫𝑥0
𝑥0

𝑑𝑠 − 𝐿) where 𝜆 is the Lagrange parameter. The
new Lagrangian can be written as1

L = 𝑑𝑔(𝑦 − 𝜆)√1 + 𝑦′2, (15)

Note that we don’t have to solve the differential equation all over again since the new term
just shifts 𝑦. Therefore, the final solution is simply a shifted version of previous one:

𝑦(𝑥) = 𝜆 + 𝐶 cosh (𝑥 − 𝐷
𝐶 ) . (16)

This makes more sense now: we have a solution with 3 free parameters and we have 3 conditions
[2 end points and the length]. Imposing the conditions we will get a unique solution. Let’s do
that by first calculating the length:

𝐿 = ∫
𝑥1

𝑥0

𝑑𝑠 = ∫
𝑥1

𝑥0

√1 + 𝑦′2𝑑𝑥 = ∫
𝑥1

𝑥0

√1 + sinh2 (𝑥 − 𝐷
𝐶 )𝑑𝑥 = ∫

𝑥1

𝑥0

cosh (𝑥 − 𝐷
𝐶 ) 𝑑𝑥

= 𝐶 [sinh (𝑥1 − 𝐷
𝐶 ) − sinh (𝑥0 − 𝐷

𝐶 )] . (17)

1We absorb the prefactor 𝑔𝑑 by redefining 𝜆
𝑔𝑑 as 𝜆.
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Along with the end point requirements, we have the following conditions:

𝑦(𝑥0) = 𝜆 + 𝐶 cosh (𝑥0 − 𝐷
𝐶 ) ≡ 𝑦0

𝑦(𝑥1) = 𝜆 + 𝐶 cosh (𝑥1 − 𝐷
𝐶 ) ≡ 𝑦1

𝐶 [sinh (𝑥1 − 𝐷
𝐶 ) − sinh (𝑥0 − 𝐷

𝐶 )] = 𝐿. (18)

In principle, these equations can be solved numerically, but we can simplify them a bit. Taking
the difference of two lines gives:

𝑦1 − 𝑦0
𝐶 = cosh (𝑥1 − 𝐷

𝐶 ) − cosh (𝑥0 − 𝐷
𝐶 ) . (19)

Take its square and subtract the square of the third line:

(𝑦1 − 𝑦0)2

𝐶2 − 𝐿2

𝐶2 = cosh2 (𝑥1 − 𝐷
𝐶 ) − 2 cosh (𝑥1 − 𝐷

𝐶 ) cosh (𝑥0 − 𝐷
𝐶 ) + cosh2 (𝑥1 − 𝐷

𝐶 )

− sinh2 (𝑥0 − 𝐷
𝐶 ) + 2 sinh (𝑥0 − 𝐷

𝐶 ) sinh (𝑥0 − 𝐷
𝐶 ) − sinh2 (𝑥0 − 𝐷

𝐶 )

= 2 [1 − cosh (𝑥0 − 𝑥1
𝐶 )] , (20)

which still needs to be solved numerically. What we accomplished by going through the algebra
was that we reduced the problem from three equation with three unknowns to one equation
with one unknown, 𝐶. Once we solve for 𝐶, we can insert it back into Eq. 19 to get 𝐷, and
finally we can compute 𝜆.

One end sliding

In many physical problems the end points might be movable. Consider a case where one end
is fixed and the other one is not, as in Figure 3
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Figure 3: The orange curve 𝑦(𝑥), which is unknown at the moment, gives the minimum value
for the functional S . The green curve represents the new curve with random defor-
mations around 𝑦(𝑥). The variation 𝜂(𝑥) must vanish at the end points since the
values of 𝑞 are fixed at these points.

This will require an important revision in the derivation of the Euler-Lagrange equation: we
will not be able to drop the boundary terms. In order to improve the notation let us define
the wiggle function 𝛼𝜂(𝑥) as 𝛿𝑦. Now, we not only perturb 𝑦 as 𝑦 + 𝛿𝑦 but also the boundary
𝑥1 as 𝑥1 + 𝛿𝑥1. With the perturbed paths and the perturbed boundary, the change in the
functional can be written as

𝛿𝑣 = ∫
𝑥1+𝛿𝑥1

𝑥0

L (𝑥, 𝑦 + 𝛿𝑦, 𝑦′ + 𝛿𝑦′)𝑑𝑥 − ∫
𝑥1

𝑥0

L (𝑥, 𝑦, 𝑦′)𝑑𝑥

= ∫
𝑥1+𝛿𝑥1

𝑥1

L (𝑥, 𝑦 + 𝛿𝑦, 𝑦′ + 𝛿𝑦′)𝑑𝑥 + ∫
𝑥1

𝑥0

L (𝑥, 𝑦 + 𝛿𝑦, 𝑦′ + 𝛿𝑦′)𝑑𝑥

− ∫
𝑥1

𝑥0

L (𝑥, 𝑦, 𝑦′)𝑑𝑥, (21)

where we split the first integral into two pieces. Note that the range of the first integral is
infinitesimally small, therefore we can simply take the value of the integrand and multiply if
by the width, which is 𝛿𝑥1. The rest of the calculation is almost identical to what we did
earlier with one difference: we dropped both of the boundary terms earlier and we can do that
no more! We have to keep the upper one in this case since it is not necessarily zero. Then the
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variation becomes:

𝛿𝑣 = L ∣
𝑥1

𝛿𝑥1 + ∫
𝑥1

𝑥0

[ 𝜕
𝜕𝑦L (𝑥, 𝑦, 𝑦′)𝛿𝑦 + 𝜕

𝜕𝑦′ L (𝑥, 𝑦, 𝑦′)𝛿𝑦′] 𝑑𝑥

= L ∣
𝑥1

𝛿𝑥1

+ ∫
𝑥1

𝑥0

[ 𝜕
𝜕𝑦L (𝑥, 𝑦, 𝑦′)𝛿𝑦 + 𝑑

𝑑𝑥 ( 𝜕
𝜕𝑦′ L (𝑥, 𝑦, 𝑦′)𝛿𝑦) − 𝑑

𝑑𝑥 ( 𝜕
𝜕𝑦′ L (𝑥, 𝑦, 𝑦′)) 𝛿𝑦] 𝑑𝑥

= L ∣
𝑥1

𝛿𝑥1 + 𝜕L

𝜕𝑦′ 𝛿𝑦∣
𝑥1

𝑥0

+ ∫
𝑥1

𝑥0

[𝜕L

𝜕𝑦 − 𝑑
𝑑𝑥 (𝜕L

𝜕𝑦′ )] 𝛿𝑦𝑑𝑥

= L ∣
𝑥1

𝛿𝑥1 + 𝜕L

𝜕𝑦′ 𝛿𝑦∣
𝑥1

+ ∫
𝑥1

𝑥0

[𝜕L

𝜕𝑦 − 𝑑
𝑑𝑥 (𝜕L

𝜕𝑦′ )] 𝛿𝑦𝑑𝑥. (22)

Since 𝛿𝑦 is an arbitrary function, we still require the following:

𝜕L

𝜕𝑦 − 𝑑
𝑑𝑥 (𝜕L

𝜕𝑦′ ) = 0. (23)

In addition to that, we need:

L ∣
𝑥1

𝛿𝑥1 + [𝜕L

𝜕𝑦′ 𝛿𝑦]
𝑥1

= 0. (24)

We should clearly state what 𝛿𝑦∣
𝑥1

means: it is the vertical displacement at 𝑥 = 𝑥1, as

illustrated in ?@fig-variationslidingzoom.
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Figure 4: The orange curve 𝑦(𝑥), which is unknown at the moment, gives the minimum value
for the functional S . The green curve represents the new curve with random defor-
mations around 𝑦(𝑥). The variation 𝜂(𝑥) must vanish at the end points since the
values of 𝑞 are fixed at these points.

As seen from the geometry in ?@fig-variationslidingzoom, we can write the following equa-
tion

𝛿𝑦∣
𝑥1

= 𝛿𝑦1 − 𝑦′(𝑥1)𝛿𝑥1. (25)

Putting this back in Eq. 24 we get

[L − 𝑦′ 𝜕L

𝜕𝑦′ ]
𝑥1

𝛿𝑥1 + 𝜕L

𝜕𝑦′ ∣
𝑥1

𝛿𝑦1 = 0. (26)

If 𝛿𝑥1 and 𝛿𝑦1 are independent, we need to set the two terms in Eq. 26 to 0 individually.
However, in most physical problems, the end point is constrained to move on a curve 𝑦1 = 𝜑(𝑥1).
In such cases we will have 𝛿𝑦1

𝛿𝑥1
= 𝜑′(𝑥1), and Eq. 26 simplifies to

[L + (𝜑′ − 𝑦′) 𝜕L

𝜕𝑦′ ]
𝑥1

𝛿𝑥1 = 0, (27)

which is known as the transversality condition. For the specific case of L in Eq. 15 we
get

[(𝑦 − 𝜆)(1 + 𝜑′𝑦′)
√1 + 𝑦′2 ]

𝑥1

= 0. (28)
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Assuming 𝑦 − 𝜆 ≠ 0 at the boundary, the only way to satisfy this equation would require
𝜑′𝑦′|𝑥1

= −1, that is 𝑦 should be orthogonal to the curve 𝜑. This is really neat. It all boils
down this: the curve will still be a catenary, but when it hits the boundary, it should be
perpendicular to it. For example, if you have a vertical post, the chain will be parallel to the
ground at the post!

Neural Networks

Why on earth will you want to solve a differential equation with neural networks(NNs)? The
first answer is, because why not if you can and you like applying NNs on everything?

Figure 5: The official slogan of the hot sauce manufacturer, Frank’s Red Hot. Neural Networks
are very powerfull and find applications in a wide range of problems.

A more reasonable answer would be that sometimes you have the differential equation that
encodes the physics of the problem, and empirical data you collected. You want to blend these
in to get the best solution. This is referred to as physics informed neural networks(PINN) [2],
[3].
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Figure 6: Illustration of a PINN. The loss function includes the deviation from the differen-
tial equation, the boundary conditions, and possibly empirical data. Credit Paris
Perdikaris.

In this approach, the deviation from the boundary and the initial conditions are integrated
into the loss function. During the training process, the network optimizes the parameters so
that the approximate solution satisfies the differential equation and the boundary conditions,
and -if available- the data, with the least amount of error. The method ensures that the
final solution is in compliance with the differential equation, which stems from the underlying
physical theory, hence the name physics informed neural network.

To be absolutely clear, for this particular problem, there is no reason to solve this problem
with NN other than that it is fun. Let’s do that and solve Eq. 10.

See the online version for the code.

Figure 7 shows that it is indeed possible to solve a differential equation with neural networks.
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Figure 7: The catenary curve obtained with neural networks and with the regular ordinary
differential equation (ODE) solver.

Experimental tests

Does this work in real life? Can we confirm that ropes and chains indeed take the catenary
shape? Let’s take a look at the image taken at the beautiful city of Estes Park, CO, and see
what it tells us.

Image processing with Python

This is not that much of a processing: we just want to load the image an overlay a cosh curve
to see if it fits the rope shape.

See the online version for the code.
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Figure 8: Drawing a
𝑐𝑜𝑠ℎ curve onto the hanging rope in the original image results in a very good fit.

A test set up

How about the sliding end case? We probably won’t find this out in the wild, so I have to
build a test rig. I have a pile of metal shafts that I have been pulling off from dead printers.
They are very polished and have low friction. I also found a plastic cylinder that fits perfectly
on the shaft, and it slides easily. The curve indeed hits the shaft at 90∘, and I find it very
cool!
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Figure 9: If one of the ends can freely slide, it will settle down to the point for which the chain
leaves from the shaft at an angle of 90∘. The curious cat is for scale.

Build your own catenary

Find the interactive catenary curve simulation with sliding mode here.
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