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We explore the statistics of the absolute difference between two random vari-
ables, each of which is linearly distributed within a specified range. We derive the
probability density function of the absolute difference, 𝑆 = |𝑅1 − 𝑅2|. We em-
ploy various methods for simulating random numbers that adhere to the derived
distribution, including inverse transform sampling and geometric approaches. The
results are validated through graphical comparisons of the theoretical and simu-
lated distributions.
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A couple years ago, I was reading through the lecture notes from Arpaci-Dusseau[1] on oper-
ating systems and came across some calculations on HDD seek time. I didn’t quite agree with
some of the hidden assumptions in the notes, and decided to take that on as a fun exercise
with random variables. I wrote a blog post on it and shared it with one of the authors of the
lecture notes. He liked my analysis so much so that he thought it should be extended and
submitted for publication in a peer-reviewed conference. We just did that and we are waiting
for the decision. Meanwhile, I want to isolate a portion of that blog post and discuss the
calculation of probability density of the the absolute difference of two random numbers, which
are themselves distributed linearly in a range.

Calculations

Consider a random variable 𝑅 which is distributed linearly in a range [𝑟i, 𝑟o]:

𝑓𝑅(𝑟) ≡ 2𝑟
𝑟2

o − 𝑟2
i

, where 𝑟i ≤ 𝑟 ≤ 𝑟o. (1)
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We take two such random variables, and define their absolute difference as a new random
variable:

𝑆 = |𝑅1 − 𝑅2|. (2)

The task is to figure out the probability density of 𝑆, i.e., 𝑓𝑆(𝑠). To this end, it is best to start
from the cumulative distribution:

𝐹𝑆(𝑠) = 𝑃(|𝑟1 − 𝑟2| < 𝑠) = ∬
|𝑟2−𝑟1|<𝑠

𝑑𝑟1𝑑𝑟2𝑓𝑅(𝑟1)𝑓𝑅(𝑟2). (3)

We need to figure out the domain for which |𝑟1 − 𝑟2| < 𝑠 is satisfied. It is the green shaded
area in Figure 1.
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Figure 1: The domain of interest for integration. In the green shaded area |𝑟2 − 𝑟1| < 𝑠 is
satisfied.

Therefore, the cumulative probability function of the difference can be written as

𝐹𝑆(𝑠) = ∬
|𝑟2−𝑟1|<𝑠

𝑑𝑟1𝑑𝑟2𝑓𝑅(𝑟1)𝑓𝑅(𝑟2) = ∬
green

𝑑𝑟1𝑑𝑟2𝑓𝑅(𝑟1)𝑓𝑅(𝑟2)

= 1 − ∬
red

𝑑𝑟1𝑑𝑟2𝑓𝑅(𝑟1)𝑓𝑅(𝑟2) = 1 − 2 ∫
𝑟o−𝑠

𝑟i

𝑑𝑟1𝑓𝑅(𝑟1) ∫
𝑟o

𝑟1+𝑠
𝑓𝑅(𝑟2)𝑑𝑟2

= 1 − 2 ∫
𝑟o−𝑠

𝑟i

𝑑𝑟1𝑓𝑅(𝑟1) [𝐹𝑅(𝑟o) − 𝐹𝑅(𝑟1 + 𝑠)] , (4)

2



from which we can get the probability density by differentiating with respect to 𝑠:

𝑓𝑆(𝑠) = 𝜕
𝜕𝑠𝐹𝑆(𝑠) = 2 ∫

𝑟o−𝑠

𝑟i

𝑑𝑟1𝑓𝑅(𝑟1)𝑓𝑅(𝑟1 + 𝑠)

= 4
3 (𝑟2

o − 𝑟2
i )2 [2(𝑟3

o − 𝑟3
i ) − 3(𝑟2

o + 𝑟2
i )𝑠 + 𝑠3] . (5)

Simulation

We first need a way of creating random numbers with the distribution in Eq. 1. Such a linear
distribution is not typically available in standard programming languages, and we have to
build the distribution ourselves. There are multiple ways of doing this. For example:

1. We can take two uniform random numbers, add them up to get a triangular distribution
(this simply follows from the convolution of two rectangular distributions.) We can then
carve out the range we are interested by simply rejecting the instances outside.

2. Alternatively, we can take two random variables 𝑋 and 𝑌 uniformly distributed in the
domain defined by 𝑟2

𝑖 < 𝑥2 + 𝑦2 < 𝑟2
𝑜 with the density 1

𝜋(𝑟2
0−𝑟2

𝑖 ) .

We then define two new random variables 𝑅 = (𝑋2+𝑌 2)1/2 and Φ = sign(𝑌 ) arccos ( 𝑋
(𝑋2+𝑌 2)1/2 ).

The measure of the integral will transform with the Jacobian matrix

𝑑𝑥𝑑𝑦
𝜋(𝑟2

0 − 𝑟2
𝑖 ) = 1

𝜋(𝑟2
0 − 𝑟2

𝑖 ) ∣𝑑(𝑥, 𝑦)
𝑑(𝑟, 𝜙) ∣ 𝑑𝑟𝑑𝜙 = 1

𝜋(𝑟2
0 − 𝑟2

𝑖 ) ∣𝑐𝑜𝑠𝜙 −𝑟𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜙 𝑟 cos 𝜙 ∣ 𝑑𝑟𝑑𝜙

= 𝑟
𝜋(𝑟2

0 − 𝑟2
𝑖 )𝑑𝑟𝑑𝜙. (6)

Upon integrating out 𝜙, we pick up a factor of 2𝜋, and get the same expression for 𝑓(𝑟) as we
had in Eq. 1.

Yet another method is to use inverse transform sampling. Consider a random variable 𝑈 ∼
Unif(0, 1) and define a random variable 𝑋 = 𝐹 −1

𝑋 (𝑈). With this construction, 𝑋 will have
CDF as 𝐹𝑋. Let’s give this a try. We first calculate 𝐹𝑅 given 𝑓𝑅 in Eq. 1:

𝐹𝑅(𝑟) ≡ ∫
𝑟

−∞
𝑑𝜏𝑓𝑅(𝜏) = 𝑟2 − 𝑟2

i
𝑟2

o − 𝑟2
i

, where 𝑟i ≤ 𝑟 ≤ 𝑟o, (7)

which results in

𝐹 −1
𝑅 (𝑈) = √𝑟2

i + (𝑟2
o − 𝑟2

i )𝑈. (8)
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In summary, if we pull numbers from a uniform random variable ( U �Unif(0,1) ) and apply
the function in Eq. 8, we will get the linear distribution. Since this is the simplest one, we will
take this approach in the simulation. I will simply simulate the random numbers with 𝑟i = 1
and 𝑟o = 2, and overlay the distributions from the simulation with the expected ones from
the model above. The results are shown in Figure 2 and Figure 3, which demonstrate perfect
agreement with the calculated and simulated distributions.

Figure 2: The linear distribution created out of the uniform random variable with 𝑟i = 1 and
𝑟o = 2.

[1] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems: Three Easy
Pieces, 1.00 ed. https://pages.cs.wisc.edu/~remzi/OSTEP/file-disks.pdf; Arpaci-
Dusseau Books, 2018.
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Figure 3: The distribution of the absolute difference of two linearly distributed random num-
bers.
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