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This post explores the physics and mathematics of diffraction, a fundamental
wave phenomenon that limits the resolution of optical instruments like telescopes.
Starting from Maxwell’s equations, we derive the wave equation in free space and
develop the mathematical framework using the Huygens-Fresnel principle. We ex-
amine how light waves interfere through apertures, leading to characteristic diffrac-
tion patterns. The analysis includes interactive visualizations that demonstrate
how parameters like aperture size, wavelength, and distance affect the resulting
intensity distributions. Special attention is given to Fresnel integrals, which are
essential for calculating these diffraction patterns.

blog: https://tetraquark.vercel.app/posts/diffraction/

email: quarktetra@gmail.com

A point source in the sky observed by a telescope will appear as a blob due to the diffraction
of light. The diffraction limits the resolution of a telescope. In this post we will take a closer
look at the physics and mathematics of the diffraction. Figure 1 illustrates self interfering light
creating a pattern on the screen[1].

1

https://tetraquark.vercel.app/posts/diffraction/
mailto:quarktetra@gmail.com


⟨I⟩

y

m = −1

m = +1

m = −2

m = +2

Figure 1: Cross-section diagram of the aperture stop and the screen.

The proper mathematics to study the diffraction is pretty intense, and we are going to build
gently towards the full treatment. Let us start with a light source in free space and understand
the propagation of waves.

Wave equation

We will need the Maxwell’s equations, which are shown below:

Gauss’ Law for electric fields: � ⋅ E = 𝜌
𝜀0

, (1)

Gauss’ Law for magnetic fields: � ⋅ B = 0, (2)

Faraday’s Law: � × E = −𝜕B
𝜕𝑡 , (3)

Ampere’s Law: � × B = 𝜇0J + 𝜇0𝜀0
𝜕E
𝜕𝑡 . (4)
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Consider the Maxwell’s equations away from the sources ( J = 0 and 𝜌 = 0). Lets take �× of
Eq. 3:

� × (� × E) = − 𝜕
𝜕𝑡 (�×𝐵) . (5)

We need the following vector identity:

(� × [� × E])𝑖 = 𝜖𝑖𝑗𝑘𝜖𝑘𝑙𝑚𝜕𝑗𝜕𝑙𝐸𝑚 = (𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙) 𝜕𝑗𝜕𝑙𝐸𝑚 = �𝑖 (� ⋅ E) − �2𝐸𝑖. (6)

Using the Ampere’s law from Eq. 4 with J = 0 , we get

(𝜇0𝜀0
𝜕2

𝜕𝑡2 − �2) E = 0. (7)

This is a wave equation with speed 𝑐 = 1√𝜇0𝜀0
, which is the speed of light. This shows that

any change in the electric fields will travel at the speed of light. If we really wanted, we could
do the identical derivation for magnetic fields.

We would like solve the wave equation:

[∇2 − 𝜕2
𝜏 ] E(r, 𝑡) = 0, (8)

where 𝜏 = 𝑐𝑡.
The spherical coordinates are illustrated in Figure 2.
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Figure 2: Spherical coordinates.
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In the spherical coordinates, the Laplace operator reads:

∇2 = [ 1
𝑟2

𝜕
𝜕𝑟 (𝑟2 𝜕

𝜕𝑟) + 1
𝑟2 sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃 𝜕

𝜕𝜃) + 1
𝑟2 sin2 𝜃

𝜕2

𝜕𝜙2 ] . (9)

However, the angle dependence drops out due to spherical symmetry.

[∇2 − 𝜕2
𝜏 ] E(r, 𝑡) = [ 1

𝑟2
𝜕
𝜕𝑟 (𝑟2 𝜕

𝜕𝑟) − 𝜕2
𝜏 ] E(r, 𝑡) = [2

𝑟
𝜕
𝜕𝑟 + 𝜕2

𝜕𝑟2 − 𝜕2
𝜏 ] E(r, 𝑡)

= 𝜕2

𝜕𝑟2 [𝑟E(r, 𝑡)] − 𝜕2
𝜏 [𝑟E(r, 𝑡)] = 0, (10)

where we used the Leibniz’s formula:

𝑑𝑚

𝑑𝑥𝑚 [𝑓(𝑥)𝑔(𝑥)] =
𝑛

∑
𝑘=0

(𝑛
𝑘)𝑑𝑘𝑓

𝑑𝑥𝑘
𝑑𝑛−𝑘𝑔
𝑑𝑥𝑛−𝑘 . (11)

This is just like the one-dimensional wave equation, and we can find the solutions as incoming
and outgoing waves:

(𝜕𝑟 + 𝜕𝜏) (𝜕𝑟 − 𝜕𝜏) [𝑟E(r, 𝑡)] . (12)

The outgoing wave solution is

E(r, 𝑡) = ℰ0
𝜆𝑟𝑒−𝑖(𝑘𝑟−𝜔𝑡+𝛿), (13)

where 𝑘 is the wave-number, 𝜆 is the wavelength, 𝜔 is the angular frequency, ℰ0 is the polar-
ization, and 𝛿 is the initial phase. We defined the overall coefficient such that the expression
actually represents the electric field surface density. The power radiated by the source is
proportional to E2 and it behaves as 1/𝑟2, which is the typical radius dependence.

Huygens-Fresnel principle

The Huygens–Fresnel principle[2], states that every individual point on a wavefront can be
treated as a point source. This principle is illustrated[3] in Figure 3.

Figure 3: An illustration of the Huygens’ principle.
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Let’s assume that there is an aperture located at 𝑧 = 0 and a screen at 𝑧 = 𝑧0. Per the
Huygens–Fresnel principle, every differential area on the aperture can be considered as light
source, and we just need to integrate over the aperture surface. We will assume that the
distance to the screen is much larger than the aperture size. This enables us to be able to
expand the radial distance from a point on the aperture r′ to a point on the screen r:

|r − r′| = √𝑧2
0 + (𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 = 𝑧0√1 + (𝑥 − 𝑥′)2

𝑧2
0

+ (𝑦 − 𝑦′)2

𝑧2
0

≃ 𝑧0 + (𝑥 − 𝑥′)2

2𝑧0
+ (𝑦 − 𝑦′)2

2𝑧0
. (14)

Inserting this back in Eq. 13 yields:

E(r) ≃ 𝑒−𝑖𝑘𝑧0

𝜆𝑧0
∬ 𝑑𝑥′𝑑𝑦′ℰ0(𝑥′, 𝑦′)𝑒−𝑖𝑘 (𝑥−𝑥′)2

2𝑧0 −𝑖𝑘 (𝑥−𝑥′)2
2𝑧0 . (15)

If the aperture is a rectangle, and the source is far away, i.e., ℰ0(𝑥′, 𝑦′) ≃ constant the integrals
in Eq. 15 can be separated:

ℐ ≡ ∫
𝑏

𝑎
𝑑𝑥′𝑒−𝑖𝑘 (𝑥′−𝑥)2

2𝑧0 = √ 𝑧0
2𝑘 ∫

√ 𝑘
2𝑧0 (𝑏−𝑥)

√ 𝑘
2𝑧0 (𝑎−𝑥)

𝑑𝑢𝑒−𝑖𝑢2

= √ 𝑧0
2𝑘

⎛⎜
⎝

∫
√ 𝑘

2𝑧0 (𝑏−𝑥)

0
𝑒−𝑖𝑢2𝑑𝑢 − ∫

√ 𝑘
2𝑧0 (𝑎−𝑥)

0
𝑑𝑢𝑒−𝑖𝑢2⎞⎟

⎠
. (16)

Now we need to study these interesting integrals.

Fresnel Integrals

The Fresnel integrals are defined as follows:

𝑆(𝑡) = ∫
𝑡

0
𝑑𝑟 sin 𝑟2,

𝐶(𝑡) = ∫
𝑡

0
𝑑𝑟 cos 𝑟2. (17)

For a general value of 𝑡, the integrals need to be evaluated numerically. However, the asymp-
totic values 𝐶(𝑡) and 𝑆(𝑡) can be calculated via the closed contour integral below:

𝐼 = ∮
𝐶

𝑑𝑧𝑒−𝑧2 . (18)

where the contour 𝐶 is illustrated in Figure 4.
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Figure 4: The contour to evaluate the integral. The return path, 𝛾1, is chosen such that the
integrand reduces to the regular Gaussian.

Let’s first evaluate the integral on 𝛾0 in the limit 𝑅 → ∞:

𝐼𝛾0
= lim

𝑅→∞
∫

𝑅

0
𝑑𝑟𝑒−𝑟2 =

√𝜋
2 , (19)

where the details of the derivation can be found here. Now consider the (absolute value of the)
integral on 𝛾𝑅 in the limit 𝑅 → ∞:

∣𝐼𝛾𝑅
∣ = ∣ lim

𝑅→∞
𝑅 ∫

𝜋
4

0
𝑑𝜃𝑒𝑖𝜃𝑒−𝑅2(cos2 𝜃−sin2 𝜃+2𝑖 cos 𝜃 sin 𝜃)∣ = ∣ lim

𝑅→∞
𝑅 ∫

𝜋
4

0
𝑑𝜃𝑒𝑖𝜃+𝑖 sin(2𝜃)𝑒−𝑅2 cos(2𝜃)∣

≤ ∣ lim
𝑅→∞

𝑅 ∫
𝜋
4

0
𝑑𝜃𝑒−𝑅2 cos(2𝜃)∣ . (20)

Let’s try to put a bound on cos(2𝜃) in the range 0 ≤ 𝜃 ≤ 𝜋/4. At cos(2𝜃)|𝜃=0 = 1 and
cos(2𝜃)|𝜃=𝜋/4 = 0. We can draw a line that connects these two points: 1 − 4𝜃

𝜋 . Since
𝑑2
𝑑𝜃2 cos(2𝜃) = −4 cos(2𝜃) < 0 for 0 < 𝜃 < 𝜋/4, we know that cos(2𝜃) < 1 − 4𝜃

𝜋 in this
range. This observation is illustrated in ?@fig-cosplot.

//| echo: false
//| label: fig-cosplot
//| fig-cap: $\cos 2\theta$ and a bound on it with the line $1-\frac{4\theta}{\pi}$

cosPlot = {
// Your existing plot div will be created and managed by Observable
const element = DOM.element('div');
element.style.width = "100%";
element.id = "cosPlot";
return element;

}
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We can now go back to Eq. 22 and make use of the bound:

∣𝐼𝛾𝑅
∣ ≤ ∣ lim

𝑅→∞
𝑅 ∫

𝜋
4

0
𝑑𝜃𝑒−𝑅2 cos(2𝜃)∣ ≤ ∣ lim

𝑅→∞
𝑅 ∫

𝜋
4

0
𝑑𝜃𝑒−𝑅2(1− 4𝜃

𝜋 )∣

= ∣ lim
𝑅→∞

𝑅𝑒−𝑅2 ∫
𝜋
4

0
𝑑𝜃𝑒𝑅2 4𝜃

𝜋 ∣ ≤ ∣ lim
𝑅→∞

𝑅 𝜋
4𝑅2 (1 − 𝑒−𝑅2)∣

= ∣ lim
𝑅→∞

𝜋
4𝑅 (1 − 𝑒−𝑅2)∣ = 0. (21)

Finally, let’s look at the integral on 𝛾1 in the limit 𝑅 → ∞:

𝐼𝛾1
= lim

𝑅→∞
𝑅 ∫

0

𝑅
𝑑𝑟𝑒 𝑖𝜋

4 𝑒−𝑟2 𝑖𝜋
2 = −1 + 𝑖√

2
lim

𝑅→∞
∫

𝑅

0
𝑑𝑟 (cos 𝑟2 − 𝑖 sin 𝑟2)

= −1 + 𝑖√
2

∫
∞

0
𝑑𝑟 (cos 𝑟2 − 𝑖 sin 𝑟2)

= − 1√
2

(∫
∞

0
𝑑𝑟 cos 𝑟2 + ∫

∞

0
𝑑𝑟 sin 𝑟2 + 𝑖 [∫

∞

0
𝑑𝑟 cos 𝑟2 − ∫

∞

0
𝑑𝑟 sin 𝑟2]) . (22)

As we have computed individual pieces of the integral Eq. 18, we can assemble them and state
that they need to add to 0 since 𝑒−𝑧2 is analytic everywhere. Therefore we have:

𝐼 = ∮
𝐶

𝑑𝑧𝑒−𝑧2 = 0 = 𝐼𝛾0
+ 𝐼𝛾𝑅

+ 𝐼𝛾1

=
√𝜋
2 + 0 − 1√

2
(∫

∞

0
𝑑𝑟 cos 𝑟2 + ∫

∞

0
𝑑𝑟 sin 𝑟2 + 𝑖 [∫

∞

0
𝑑𝑟 cos 𝑟2 − ∫

∞

0
𝑑𝑟 sin 𝑟2]) .(23)

Matching the real and imaginary parts, we get:

1√
2

(∫
∞

0
𝑑𝑟 cos 𝑟2 + ∫

∞

0
𝑑𝑟 sin 𝑟2) =

√𝜋
2 ,

1√
2

(∫
∞

0
𝑑𝑟 cos 𝑟2 − ∫

∞

0
𝑑𝑟 sin 𝑟2) = 0, (24)

from which we get

∫
∞

0
𝑑𝑟 cos 𝑟2 = ∫

∞

0
𝑑𝑟 sin 𝑟2 = 1

2√𝜋
2 ≃ 0.626. (25)

Now we can conclude with the plots of the Fresnel integrals in ?@fig-parametricplot .
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//| echo: false
//| label: fig-parametricplot
//| fig-cap: "Left: Fresnel integrals as a function of their argument, Right: parametric plot of the integrals forming the Euler spiral."

parametricPlot = {
// Your existing plot div will be created and managed by Observable
const element = DOM.element('div');
element.style.width = "100%";
element.id = "parametricPlot";
return element;

}

Going back to Eq. 16, we see that we can express it in terms of the Fresnel integrals:

ℐ ≡ ∫
𝑏

𝑎
𝑑𝑥′𝑒−𝑖𝑘 (𝑥′−𝑥)2

2𝑧0 = √ 𝑧0
2𝑘

⎛⎜
⎝

∫
√ 𝑘

2𝑧0 (𝑏−𝑥)

0
𝑒−𝑖𝑢2𝑑𝑢 − ∫

√ 𝑘
2𝑧0 (𝑎−𝑥)

0
𝑑𝑢𝑒−𝑖𝑢2⎞⎟

⎠
= √ 𝑧0

2𝑘 {𝐶(𝑢) − 𝐶(𝑣) + 𝑖[𝑆(𝑣) − 𝑆(𝑢)]} , (26)

where 𝑢 = √ 𝑘
2𝑧0

(𝑏 − 𝑥) and 𝑣 = √ 𝑘
2𝑧0

(𝑎 − 𝑥). Remember that the aperture is between 𝑎 and
𝑏 with a span 𝐿 = 𝑏 − 𝑎. We can shift the coordinate system so that the aperture is centered
at 0 and it extends from 𝑎 = −𝐿/2 to 𝑏 = 𝐿/2. Plugging this back in to Eq. 26 we get

ℐ = √ 𝑧0
2𝑘 {𝐶(𝑥+) − 𝐶(𝑥−) + 𝑖[𝑆(𝑥−) − 𝑆(𝑥+)]} ≡ √ 𝑧0

2𝑘ℱ(𝑥−, 𝑥+), (27)

where 𝑥± = 𝑥±𝐿/2 and ℱ(𝑥−, 𝑥+) ≡ 𝐶(𝑥+)−𝐶(𝑥−)+𝑖[𝑆(𝑥−)−𝑆(𝑥+)]. This is the 𝑥 integral.
We have an identical copy for 𝑦 axis. Putting them together along with the overall coefficient
in Eq. 15 we get:

E(r) ≃ ℰ0𝑒−𝑖𝑘𝑧0

2 ℱ(𝑥−, 𝑥+)ℱ(𝑦−, 𝑦+), (28)

where 𝑦± = 𝑦 ± 𝐿𝑦/2.

Interactive Plots

We can now take Eq. 28 and plot the intensity in ?@fig-intensityplot.

𝐿𝑥(𝜇m)
𝐿𝑦(𝜇m)
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𝑧(𝜇m)
𝜆
plot range

Plot Type

//| echo: false
//| label: fig-intensityplot
//| fig-cap: "Intensity plot for various input parameters."
intensityPlot = {

// Your existing plot div will be created and managed by Observable
const element = DOM.element('div');
element.style.width = "100%";
element.id = "intensityPlot";
return element;

}

[1] Tikz.net, “Diffraction.” https://tikz.net/optics_diffraction/, 2024.
[2] Wikipedia, “Huygens–Fresnel principle — Wikipedia, the free encyclope-

dia.” http://en.wikipedia.org/w/index.php?title=Huygens%E2%80%93Fresnel%
20principle&oldid=1181770846, 2024.

[3] Tikz.net, “Huygens’ optics.” https://tikz.net/optics_huygens/, 2024.
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