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This article presents a rigorous mathematical proof demonstrating why exponen-
tial distributions naturally emerge in memoryless physical processes. We show that
the exponential distribution is uniquely characterized by its memoryless property
through two distinct approaches. The first proof utilizes the survival function and
its homomorphism properties, extending from natural numbers to rational and real
domains. The second, more physics-oriented derivation employs differential equa-
tions to arrive at the same conclusion. We conclude by connecting these results to
the hazard function formalism, providing an intuitive framework for understanding
why exponential distributions are fundamental to describing microscopic systems
such as radioactive decay.
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Many processes in physics are defined by exponential distribution. Have you ever wondered
why that is the case? That is because it is the only one available for microscopic systems. A
microscopic system, such as a radioactive atom has no internal memory. And the only contin-
uous distribution with no memory is the exponential distribution. Let’ prove this. Consider
a random variable 𝑋 defined by its probability function 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥), which is read as
probability of 𝑋 being less than a given number 𝑥. Typically 𝑋 is associated with some kind
of event or failure, and that is why a counter part of 𝐹𝑋 is defined as the survival function 𝑆𝑋
Define the survival function 𝑆(𝑡):

𝑆𝑋(𝑥) = 1 − 𝐹𝑋(𝑥) = 1 − 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑋 > 𝑥). (1)

What is the conditional probability of 𝑋 > 𝑥 + 𝑠 given that it survived until 𝑥?

𝑃(𝑋 > 𝑥 + 𝑠|𝑋 > 𝑥) = 𝑃(𝑋 > 𝑥 + 𝑠)
𝑃(𝑋 > 𝑥) = 𝑆𝑋(𝑥 + 𝑠)

𝑆𝑋(𝑥) . (2)

The critical observation is this: if the process has no memory, the conditional probability can
only depend on the difference in observation points. Think about it this way: the probability
of an atom to decay before 𝑡 = 1 year given that it is intact at 𝑡 = 0 is the same as the
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probability of it decaying within the 𝑡 = 11𝑡ℎ year given that it is intact at 𝑡 = 10 year. Atoms
don’t remember how old they are. Therefore we require that the right hand side of Eq. 2 has
no 𝑥 dependence, that is:

𝑆𝑋(𝑥 + 𝑠)
𝑆𝑋(𝑥) = 𝑆𝑋(𝑠) ⟹ 𝑆𝑋(𝑥 + 𝑠) = 𝑆𝑋(𝑥)𝑆𝑋(𝑠), (3)

which is begging for the exponential function due to its homomorphism property mapping
multiplication to addition. To show this explicitly, consider the repeated application of 𝑆(𝑥)
𝑝 times

[𝑆𝑋(𝑥)]𝑝 = 𝑆𝑋(𝑥)𝑆𝑋(𝑥) ⋯ 𝑆𝑋(𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝 times

= 𝑆𝑋(𝑝𝑥), (4)

where 𝑝 is a natural number. This certainly holds for natural numbers, but we can do better.
Now consider another counting number 𝑞 and apply 𝑆(𝑥/𝑞) 𝑞 times

[𝑆𝑋 (𝑥
𝑞 )]

𝑞
= 𝑆𝑋 (𝑥

𝑞 ) 𝑆𝑋 (𝑥
𝑞 ) ⋯ 𝑆𝑋 (𝑥

𝑞 )
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑞 times

= 𝑆𝑋 (𝑞 𝑥
𝑞 ) = 𝑆𝑋(𝑥) ⟹ 𝑆𝑋 (𝑥

𝑞 ) = [𝑆𝑋 (𝑥)]
1
𝑞 . (5)

Since we can make this work for 𝑝 and 1/𝑞, it also works for 𝑝/𝑞:

𝑆𝑋 (𝑝
𝑞 𝑥) = 𝑆𝑋 (𝑝𝑥

𝑞 ) = [𝑆𝑋 (𝑥
𝑞 )]

𝑝
= [(𝑆𝑋(𝑥))

1
𝑞 ]

𝑝
= [𝑆𝑋(𝑥)]

𝑝
𝑞 . (6)

That is

𝑆𝑋 (𝑎𝑥) = [𝑆𝑋(𝑥)]𝑎 , (7)

where 𝑎 = 𝑝
𝑞 is a rational number. What about irrational numbers? Since the rationals are a

dense subset of the real numbers, for every real number we can find rational numbers arbitrarily
close to it[1]. The continuity of 𝑆 ensure that we can upgrade 𝑎 from an rational number to a
real number. One last thing to do is to show that we are getting our old friend 𝑒 out of this.
Setting 𝑥 = 1 in Eq. 7 gives

𝑆𝑋 (𝑎) = [𝑆𝑋(1)]𝑎 = (exp {− ln [𝑆𝑋(1)]})𝑎 ≡ 𝑒−𝜆𝑎, (8)

where 𝜆 = − ln [𝑆𝑋(1)] > 0.

This derivation is very satisfying, particularly for a non-mathematician like me. But it is a bit
too rigorous. We can do a physicist version of this derivation. We start from Eq. 3, take the
log and the derivative of both sides with respect to 𝑠:
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𝑑
𝑑𝑠 log (𝑆𝑋(𝑥 + 𝑠)) = 𝑆′

𝑋(𝑥 + 𝑠)
𝑆𝑋(𝑥 + 𝑠)

𝑑
𝑑𝑠 log (𝑆𝑋(𝑥)𝑆𝑋(𝑠)) = 𝑑

𝑑𝑠 [log (𝑆𝑋(𝑥)) + log (𝑆𝑋(𝑠))] = 𝑆′
𝑋(𝑠)

𝑆𝑋(𝑠) . (9)

They are equal to each other:

𝑆′
𝑋(𝑥 + 𝑠)

𝑆𝑋(𝑥 + 𝑠) = 𝑆′
𝑋(𝑠)

𝑆𝑋(𝑠) ≡ −𝜆, (10)

where we realized that the terms are functions of 𝑠 or 𝑥+𝑠, and they cannot possibly be equal
to each other unless they are equal to a constant. Integrating, we get:

𝑆′
𝑋(𝑠)

𝑆𝑋(𝑠) = 𝑑
𝑑𝑠 [log (𝑆𝑋(𝑠))] = −𝜆 ⟹ 𝑆𝑋(𝑠) = 𝑒−𝜆𝑠, (11)

which completes the proof.

One of the difficulties with such proofs is that, they are done backwards. In fact, life would
have been much easier if we started from the so called hazard function. I talked about this in
one of my earlier posts: Musings on Weibull distribution. If we start from a hazard function
(ratio of failures to the survivors) ℎ and define everything else on top, this is how things go:

ℎ(𝑡) ≡ 𝑓(𝑡)
1 − 𝐹(𝑡) =

𝑑
𝑑𝑡𝐹(𝑡)

1 − 𝐹(𝑡) = − 𝑑
𝑑𝑡 [𝑙𝑛 (1 − 𝐹(𝑡))] ⟹ 𝐹(𝑡) = 1 − 𝑒− ∫𝑡

0 𝑑𝜏ℎ(𝜏). (12)

If you go with the simplest assumption (memory-less, constant) ℎ = 𝜆, you get the exponential
distribution.

[1] N. L. Biggs, Discrete mathematics. OUP Oxford, 2002 [Online]. Available: https:
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