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This article explores the physics and applications of Fabry-Perot cavities, with
a particular focus on their role in LIGO (Laser Interferometer Gravitational-Wave
Observatory). We derive the fundamental equations governing cavity transmission
and reflection, introduce the concept of finesse, and analyze different coupling
regimes. The formation of interference patterns and bullseye fringes is explained
through rigorous mathematical treatment. Building upon previous posts about
LIGOQ'’s electronics, this article complements the series by delving into the optical
principles that make precision gravitational wave detection possible.
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Several months ago I shared a series of posts on the LIGO (Laser Interferometer Gravitational-
Wave Observatory) optics and photodetector circuits. The content was mostly around the
electronics to optimize the noise performance of the read out circuitry. I skipped some of
the fascinating details related to optics. Today we will focus on optics and derive some neat
formulas that make the LIGO tick. Fabry-Perot cavity will be the main interest and we will
show how it can be used for various purposes.

Here is the list of earlier posts , in case you may find them useful to read through:

e Re-optimizing aLIGO RF filter,

e Real coils are not purely imaginary,
e An analysis of aLIGO PD circuit,

¢ LIGO modulation,

o RLC filters.

Introduction

The Fabry-Perot interferometer, also known as a Fabry-Perot cavity or etalon, is an optical
device that has revolutionized numerous fields in science and technology [1]. Developed by
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Charles Fabry and Alfred Perot in 1899 [2], it consists of two parallel, highly reflective surfaces
separated by a specific distance. Its design allows it to produce sharp interference fringes,
making it a powerful tool for high-resolution spectroscopy, laser technology, and precision
measurements [3]. The Fabry-Perot interferometer’s ability to selectively transmit or reflect
light based on its wavelength has found applications in telecommunications, astronomy, and
even in the detection of gravitational waves [4], [5].

The Geometry

Consider two parallel mirrors placed with a distance of L as illustrated in Figure 1.

Figure 1: Two semi-reflective mirrors placed in parallel with a distance of L. The light will
reflect multiple times between the mirrors.

A plane wave of amplitude ¢ impinges on the setup from the left. Each time the light ray
passes through a mirror, it acquires a factor of ¢, the transmission coefficient, and each time
it’s reflected, it acquires a reflection coefficient . We need to keep track of these factors and
sum them up. Another crucial detail is the phase shift as light travels between the mirrors.
The distance it covers in a one-way trip is L/ cosf. Let’s follow the ray as it splits into two at
point A. One portion passes through the mirror and arrives at point D. The remaining part
is reflected at point A, then a smaller portion of it is reflected at B to reach point C. Finally,
some of it will transmit through the right mirror.

Note that we must compare the phases at points C' and D, not at C' and A. This is because
the wavefront is tilted at an angle #. The path difference is:

A = |AB| + |BC| — |AD|. (1)

It is straightforward to calculate the distances as



|AB| = |BC| = L ., |AD| = sin0|AC| = sin 0 (2sin | AB|) = 2sin” GL. (2)
cos 0 cos 0

Putting these back into Eq. 1, we get

L
A=2— (1—sin?6) = 2L cos . (3)
Therefore the phase factor reads:
gik2Lcos® _ i?mhbgost eifr (4)
where A is the wavelength of the light and we defined 6, = Lfose as the phase shift for

one-way travel. Let us now compute the light transmitted all the way to the right side by sum
over all the blue arrows pointing right:
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Let’s consider what happens to the phase upon reflection. The phase shifts for two-sided
mirrors require careful consideration. For two-sided mirrors, the phase shift occurs for light
incident from one side of the mirror. This can be demonstrated using reciprocity arguments,
i.e., r; = —rp, where r; and rp are the reflection coefficients for light incident from the left
and right sides, respectively.

In our previous calculation, we adopted the conventional approach where the phase shift is
defined as 7 for reflections occurring inside the cavity. However, this phase shift effectively
disappears for transmitted rays because there are always an even number of reflections. It’s
worth noting that all reflections, except for the very first one, occur inside the cavity. With
these considerations in mind, let’s now calculate the reflected beam by summing the blue
arrows pointing left:
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where the minus sign is a result of odd number of reflections inside the cavity. Now let’s make
use of the conservation of energy:



F+ri4l = 1= *=1—r*—1 (7)
where [ is the loss term. Inserting back this back in Eq. 6, we get
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There is a quicker way of computing the coefficient. Consider the illustration in Figure 2.
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Figure 2: The cavity creates a circulating filed inside. The reflected and transmitted fields can

be written in terms of F,

irc Il @ Tecursive way.

E.irc 18 the field at the right side of the mirror on the left. It reflects twice and gets a phaseshift
to combine back into €,.. That is:
20 t
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The transmitted field is easy to write down:
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which is identical to Eq. 5. Similarly for the reflected light, we have
i26 i26 t;
Eref = ET;— tiree TEcive = €T3 — tiree T (11)
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which is identical to Eq. 6 that led to Eq. 8



Finesse

Let’s go and play with Eq. 5 a bit.

T = El — ’tite‘z — ’titeP — ’titeP 1 (12)
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It is periodic and will have its peaks at:
2mL cos 6 mA
T 3 mm m = arccos { o (13)
where m is an integer. To clean up the notation a bit, let’s define
Ar 7.
o= rer (1)
(1 - Teri>
which will transform the transmission coefficient to

(1—ror)? 1+ ®sin®(07)

It is convenient to define an angle, 67 at which 7" is equal to the half of its peak value. The
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peak value is T}, = 5. We require
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The function is symmetric in #,. The width between these two symmetric points of half peak

is 207 = 2arcsin %I). Also remember that the spacing of the peaks is w. The ratio of the

separation of fringes to the width of half peak points is defined as Finesse

[\
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® is typically a large number. Therefore arcsin 716 o 716' The finesse can be simplified as
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We can define three modes of operation when A = —2L 6]

1. Under coupling: €, > 0 when r; > r (1 —1;),



2. Optimal coupling: €, =0 when r; = r (1 —1,),
3. Over coupling: €, < 0 when r; < r (1—1,).

For LIGO, the coefficients are t? = 0.03, and r2 = 0.99997 [6] which give F = 208 for 4km

arms. Light storage time in a cavity is defined as
L
T=9—, (19)
c

which is about 870 ms.

Bulls Eye

This discussion is not relevant for LIGO since 8 ~ 0 for their detector. For spectroscopic
applications, # has some variation, and we want to understand how it affects the interference
pattern. Let us turn back to Figure 1, which has a bunch of outgoing rays. If you look at
textbooks or popular youtube channels on the topic, they will tell you that when these rays
are projected on a screen with a focusing lens, as shown in Figure 3, you will get a bullseye
pattern, i.e., concentric cirles of fringes.

[ T, t; Te, te

Figure 3: A somewhat-misleading cartoon of the supposed interference pattern when the screen
is viewed from front.

This explanation is somewhat misleading. Let’s break it down:

1. If you shine a collimated laser beam of negligible radius into the cavity, you’ll get a series
of transmitted beams exiting the cavity that will all be focused to a single point by the
lens (ignoring spherical aberration). There’s nothing in Figure 3 on the source side that
would create rings on the screen.



2. To get multiple rings, you need an extended source that provides light at different angles
0. As you sweep through the source coordinates, the projection on the screen will trace
out circles of varying radii p = ftand. The brightness of each ring depends on the
interference conditions given by Eq. 5.

To produce the classic bullseye pattern, you need either:

1. An extended source, as shown in Figure 4 [7], or
2. A divergent beam, which can be created by passing the laser light through a concave
lens before it enters the cavity.

These configurations provide the range of incident angles necessary to create the multiple
interference rings.

Fabry-Perot
interferometer

Lens

Extended
Source

Figure 4: A more realistic illustration of the setup leading to the bullseye pattern. Image taken
from [7].

To formulate the interference pattern mathematically, we can write the transfer function, or
the Green’s function as physicists will call it, for the system that maps the input rays to points
on the screen. It will be something like this:

G<p7 ¢7 9/7 ¢/) - 5(:0 - ftan 0/)5(¢ - ¢/)T(0/)
|tite|2 1

= §(p— ftan6)6(¢p — ¢’ ) 20
( )o( )(1 P14 s (20)
where, 0/, = %COSG/ and we use primed coordinates for the source points. If the source
distribution is given by some function, S(6’, ¢’), the image on the screen will be:
Ip,0) = [ d6'd6/Glp,0:8'.6)5(8'. ). (21)
S



where the integral is computed over the source points. Let’s do a test run with a single laser
pointer aimed in the direction (¢, ¢") = (6, ¢, ); that is:

S(0",¢") = Sg0(0" = 01)5(¢" — bp), (22)

where S is the intensity. Plugging this into Eq. 21 we get:

I(p.6) = 5 /S 46§/ Glp, 6.6 )5(6 — 0,)5(8) — 6,
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which is a single point at position p = ftanf; and ¢ = ¢;. The intensity is proportinal to
1/(1+ ®sin®(0%)), so it may be a dark spot depending on the value of 6.

If the input is a cone of light, i.e., it covers ¢’ uniformly; this will remove the §(¢ — ¢ ) from
the output, and the result will be o< 6(p— ftanf;), i.e., aring of p = ftanf,. But, remember,
it can be a dark one depending on the value of ;.

Finally, if the source provides a collection of 8" rays, now the p will have a range. Let’s say the
source is producing somewhat isotropic light of intensity S, i.e., uniform for any angle, then
we will get the collection of rings:
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Let’s evaluate this integral. First of all we need to deal with the pesky d(p — ftan®’) term.

It will set 0" = 6, = arctan(p/f), (which also means cosf, = ﬁ), but it will need to

figure out the scaling of the integral measure. Let do this dummy shift of variable: 6 =

(0/_00)—1_90:
Sp— ftand’) = 5(p— fran((0/ —0,) +0)) = b (p— f (tanfy + (6 — 0,) tan’ 6,))
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Putting this back in Eq. 24, we get
f ‘tite|2 1
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Finally, let’s insert the definition of 6. = %‘mg/ to write down the final equation:

P8y ltitl? i
I(p) = e : (27)
P4 a-— 7“Ji>2 1+ ®sin’ (A\%EQLTJCPJ

p is the radial distance from the center, and as it varies we will hit the zeros of sin function
which will create the bullseye pattern.
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