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A detailed analysis of a hydrogen atom placed in a uniform magnetic field, fo-
cusing on the addition of angular momentum and spin interactions. This post
demonstrates how to find eigenvalues and eigenstates for both zero and non-zero
magnetic field cases, showing the intricate quantum mechanical behavior of coupled
spin systems and the formation of entangled states through angular momentum
coupling.
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Consider a hydrogen atom in which the electron is in the ground state. When the atom is
placed in a uniform magnetic field, its Hamiltonian is given by 𝐻 = 2𝜇𝑒𝑒𝐵 ⋅ 𝑆𝑒𝑧 + 4𝑊Se ⋅ Sp,
where Se and Sp are the spins of the electron and the proton in the atom, respectively, 𝑆𝑒𝑧
is the z-component of Se, B is the strength of the magnetic field, and 𝜇𝑒 and 𝑊 are physical
constants. We want to find the eigenvalues and eigenstates of 𝐻 for 𝐵 = 0 first, and then for
the general case of 𝐵 ≠ 0.

We first consider the case 𝐵 = 0, for which the spin interaction Hamiltonian is given as:

𝐻 = 4𝑊Se ⋅ Sp = 2𝑊 [(Se + Sp)2 − Se
2 − Sp

2] = 2𝑊(J2 − 3
2), (1)

where J = Sp+Se is the total angular momentum operator. Now, we need to find the spectrum
of 𝑗, which is the total angular momentum quantum number, which results from addition of
two spin-1/2 particles. The general rule for addition of two particles with spin 𝑆1 and 𝑆2 is
|𝑆1 − 𝑆2| ≤ 𝑗 ≤ 𝑆1 + 𝑆2, which tells us that 𝑗 = 0, 1 for our case. So the eigenstates are,

|0, 0⟩, |1, 1⟩, |1, 0⟩ and |1, −1⟩. (2)

Note that the last three states have the same energy, 𝑊 . The first state has energy −3𝑊 .
When we turn on 𝐵, the first part of the Hamiltonian becomes effective. This part has the
eigenstates,

| ↑; ↓, ↑⟩ and | ↑; ↓, ↑⟩, (3)
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where we choose the first state to be the electron state, which can be up or down. The state
of the proton is irrelevant for the this part of the Hamiltonian, it can be up or down. We
have to find the common eigenstates for the first and second part of the Hamiltonian, which
will be the eigenstates of the full Hamiltonian. For this, we may expand the states given in
Eq. 2 in terms of the the individual states, |𝑗𝑒, 𝑚𝑒⟩ and |𝑗𝑝, 𝑚𝑝⟩. Two of them will be trivial
to do, |1, 1⟩ = | ↑, ↑⟩ (both particles have to be spin up so that total spin along 𝑧 is 1.) and
|1, −1⟩ = | ↓, ↓⟩ (both particles have to be spin down so that total spin along 𝑧 is −1). For
|0, 0⟩, we propose the form, |0, 0⟩ = 𝛼| ↑, ↓⟩ + 𝛽| ↓, ↑⟩, and try the following;

𝐽−|0, 0⟩ = 0 = (𝐽1− + 𝐽2−) (𝛼| ↑, ↓⟩ + 𝛽| ↓, ↑⟩) = (𝛼 + 𝛽)| ↓, ↓⟩, 𝛼 = −𝛽. (4)

Normalizing the state we get |0, 0⟩ = |↑,↓⟩−|↓,↑⟩√
2 .

For |1, 0⟩ state we can again propose, |1, 0⟩ = 𝛼| ↑, ↓⟩+𝛽| ↓, ↑⟩. The fastest way to get 𝛼 and 𝛽
is to use the orthogonality of the states, namely ⟨0, 0|1, 0⟩ = 0 which results in |1, 0⟩ = |↑,↓⟩+|↓,↑⟩√

2 .
Now we have an easy task of checking which ones of the above are eigenfunctions of 𝑆𝑒𝑧. Clearly
only |1, 1⟩ and |1, −1⟩ have definite values for 𝑆𝑒𝑧, 1/2 and −1/2 respectively (remember
we choose the first state to be the electron state). So they are certainly eigenstates of the
Hamiltonian, with eigenvalues 𝑊 +𝜇𝑒𝐵 and 𝑊 −𝜇𝑒𝐵, respectively. The states |0, 0⟩ and |1, 0⟩
don’t have a definite 𝑆𝑒𝑧. So we conclude that they are not eigenstates of the full Hamiltonian.
We are not finished yet! Is there a possibility to create eigenstates as linear combinations of
|0, 0⟩ and |1, 0⟩? It is clear that the combination will not be an eigenstate of 𝐽2, and it won’t
be an eigenstate of 𝑆𝑒𝑧 either. But some specific combination may be the eigenstate of the full
Hamiltonian. To find that combination it will be helpful to recognize the following property,

𝑆𝑒𝑧|00⟩ = 1
2|1, 0⟩, 𝑆𝑒𝑧|1, 0⟩ = 1

2|00⟩. (5)

To simplify the notation lets define, 𝜓0 = |0, 0⟩ and 𝜓1 = |1, 0⟩. Now if we write down
Schrodinger equations for 𝜓0 and 𝜓1, we recognize that these two coupled equations can be
put into a matrix form as follows.

𝑖 𝜕
𝜕𝑡 ( 𝜓0

𝜓1
) = ( −3𝑊 𝜇𝑒𝐵

2𝜇𝑒𝐵
2 𝑊 ) ( 𝜓0

𝜓1
) = 𝐻 ( 𝜓0

𝜓1
) . (6)

So there are two more eigenstates, which are the eigenvectors of the above Hamiltonian. The
eigenvalues can be calculated to be −2𝑊−√𝐵2𝜇2𝑒+16𝑊 2

2 and −2𝑊+√𝐵2𝜇2𝑒+16𝑊 2

2 . The correspond-
ing eigenvectors become,

|1⟩ = 1
𝑁 (−4𝑊 + √𝐵2𝜇2𝑒 + 16𝑊 2

𝐵𝜇𝑒
|0, 0⟩ + |1, 0⟩) ,

|2⟩ = 1
𝑁 (−4𝑊 − √𝐵2𝜇2𝑒 + 16𝑊 2

𝐵𝜇𝑒
|0, 0⟩ + |1, 0⟩) , (7)

where 𝑁 is the normalization constant. This completes the set of eigenstates, |1, 1⟩, |1, −1⟩
and |1⟩, |2⟩. Note that there have to be 4 of them, since this is a system of multiplicity
(2𝑆𝑒 + 1) × (2𝑆𝑝 + 1) = 4, and eigenstates of 𝐻 must form a basis.
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