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A practical approach to computing the hydrogen ground state wavefunction using
minimal information. This post demonstrates how to derive the wavefunction
from basic principles of normalization and the Schrödinger equation, then applies
this knowledge to calculate transition probabilities in beta decay processes. The
analysis covers the transition from tritium to helium-3, showing how quantum
mechanics governs nuclear decay processes and atomic state transitions.
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Consider yourself sitting on a sunny beach, minding your own business… And all of a sudden
you realize you can’t write down the ground state wavefunction of a hydrogen-like atom (e.g.,
He+, Li++) from memory. What a shame! The only thing you remember is that it was of
this form:

𝜓(𝑟) = 𝐴 exp(−𝛽𝑟) (1)

where 𝐴 and 𝛽 are constants. However, you know that 𝜓 has to be normalized:

∫ 𝑑3𝑥|𝜓(𝑟)|2 = 1 = 𝐴2 ∫ 4𝜋𝑑𝑟𝑟2𝑒−2𝛽𝑟 = 4𝜋𝐴2 1
(2𝛽)3 ∫

∞

0
𝑑𝑢𝑢2𝑒−𝑢

= 𝜋𝐴2

𝛽3

⇒ 𝐴2 = 𝛽3

𝜋 . (2)

Furthermore, 𝜓 satisfies the Schrodinger equation:
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𝐸𝜓(𝑟) = − 1
2𝑚∇2𝜓(𝑟) − 𝑍𝑒2

𝑟 𝜓(𝑟)

= − 1
2𝑚𝑟2

𝜕
𝜕𝑟(𝑟2 𝜕

𝜕𝑟𝜓(𝑟)) − 𝑍𝑒2

𝑟 𝜓(𝑟)

= (−𝛽2

2𝑚 + 𝛽
𝑚𝑟 − 𝑍𝑒2

𝑟 ) 𝜓(𝑟), (3)

where 𝑍𝑒 is the nuclear charge. You match the powers of 𝑟 to get

𝛽 = 𝑚𝑒2𝑍 = 𝑍
𝑎0

, 𝐸 = − 𝛽2

2𝑚 = −𝑚𝑒4

2 𝑍2, (4)

which yields all the unknown coefficients.

Now imagine that the atom you started with is tritium (an isotope of hydrogen) and it suddenly
decays into a helium nucleus with the emission of a fast electron that leaves the atom without
perturbing the atomic electron outside the nucleus. What is the probability that the resulting
He+ ion will be left in the 1𝑠 state? This is a beta-decay:

𝑛 ⟶ 𝑝 + 𝑒 + ̄𝜈𝑒 (5)

The initial wave function is 1𝑠 state of a hydrogen-like atom, tritium (𝑍 = 1), and the final
one is the 1𝑠 state of 3He (𝑍 = 2). The wave functions for these state can be found using Eqs.
1 and 4:

𝜓𝑡𝑟(𝑟) = √ 1
𝜋𝑎3

0
𝑒−𝑟/𝑎0 , 𝜓𝐻𝑒(𝑟) = √ 8

𝜋𝑎3
0
𝑒−2𝑟/𝑎0 (6)

The transition probability can be calculated as

𝑃𝑟𝑜𝑏(1𝑠 → 2𝑠) = |⟨𝜓𝑡𝑟|𝜓𝐻𝑒⟩|2

= ∣2
√

2
𝜋𝑎3

0
∫

∞

0
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2
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√

2
𝑎3

0

𝑎3
0

27 ∫
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0
𝑑𝑢𝑢2𝑒−𝑢∣

2

= ∣16
√

2
27 ∣

2

= 0.70 (7)

The only possible value for 𝑙 is 0, because of the orthogonality of the spherical harmonics. If you
are concerned about the missing probability, 0.3, you are welcome to calculate probabilities for
transitions to 2𝑠, 3𝑠, 4𝑠… Here are some of the results, 0.25, 0.013 and 0, 004. The probability
builds up to 1 slowly, which also says that there is no room for new values of 𝑙.
The image in the thumbnail is taken from “Hydrogen Atoms under Magnification: Direct
Observation of the Nodal Structure of Stark States”1
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