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This article presents a detailed solution to a crazy ass integral that gained in-
ternet fame on Math Stack Exchange. The integral was later solved in full detail
by Ron Gordon using sophisticated complex analysis techniques. We follow Gor-
don’s elegant approach, which employs multiple variable transformations, complex
contour integration over a keyhole contour, and residue calculus to evaluate the
integral exactly. The solution demonstrates remarkable mathematical beauty, in-
volving the golden ratio and requiring careful analysis of an 8th-order polynomial’s
factorization. The final result connects this seemingly intractable integral to sim-
ple expressions involving arctangent functions and fundamental mathematical con-
stants.

blog: https://tetraquark.vercel.app/posts/integral_crazy_ass/?src=pdf

email: quarktetra@gmail.com

I have been very busy for the last several months and didn’t have time to have fun with
integrals, let alone posting to my “integral of the month” series. It is not really “the integral
of the month” if I don’t post monthly, is it? To make up for the missing months, we will look
into a crazy-ass integral which became famous on the internet.

𝐼 = ∫
1

−1

1
𝑥

√1 + 𝑥
1 − 𝑥 log (2𝑥2 + 2𝑥 + 1

2𝑥2 − 2𝑥 + 1) 𝑑𝑥 (1)

This integral was posted on stackexchange and a user, Cleo, posted an answer with no details of
her work. Then the wizard of integrals, Ron Gordon, worked out the solution, which matched
Cleo’s answer. Today we will follow Ron’s solution and I have to emphasize that he deserves
all the credit for the derivation. I am just here to walk you through it and enjoy the sneaky
tricks he used.
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Getting started

The first thing is to define a new variable

𝑡 = 1 − 𝑥
1 + 𝑥 ⟺ 𝑥 = 1 − 𝑡

1 + 𝑡 (2)

and

𝑑𝑡 = 𝑑 (1 − 𝑥
1 + 𝑥) = −𝑑𝑥(1 + 𝑥) − 𝑑𝑥(1 − 𝑥)

(1 + 𝑥)2 = −2 𝑑𝑥
(1 + 𝑥)2 . (3)

Plugging 𝑥 from Eq. 2 yields:

𝑑𝑡 = −2 𝑑𝑥
(1 + 𝑥)2 = −2 𝑑𝑥

(1 + 1−𝑡
1+𝑡)2 = −𝑑𝑥(1 + 𝑡)2

2 ⟺ 𝑑𝑥 = − 2
(1 + 𝑡)2 𝑑𝑡 (4)

The factor in front of the logarithm and the integral measure simplify to:

𝑑𝑥
𝑥

√1 + 𝑥
1 − 𝑥 = − 2𝑑𝑡

(1 + 𝑡)2
1 + 𝑡
1 − 𝑡

1√
𝑡 = −2𝑑𝑡

(1 − 𝑡2)
√

𝑡. (5)

The argument of the logarithm becomes:

2𝑥2 + 2𝑥 + 1
2𝑥2 − 2𝑥 + 1 = 2(1 − 𝑡)2 + 2(1 − 𝑡)(1 + 𝑡) + (1 + 𝑡)2

2(1 − 𝑡)2 − 2(1 − 𝑡)(1 + 𝑡) + (1 + 𝑡)2 = 𝑡2 − 2𝑡 + 5
5𝑡2 − 2𝑡 + 1. (6)

Just stare at coefficients of the polynomial in the numerator and denominator in the logarithm.
They are flipped with respect to each other. In fact, one can switch form one to the other
simply by transforming 𝑡 → 1/𝑡. This will become critical later!

The limits of the 𝑥 integral, [−1, 1], get mapped to [∞, 0]. Therefore, the integral looks like
this:

𝐼 = 2 ∫
∞

0

𝑑𝑡√
𝑡(1 − 𝑡2) log ( 𝑡2 − 2𝑡 + 5

5𝑡2 − 2𝑡 + 1) . (7)

Inversion symmetry

Let’s split the integral into two domains as [0, 1] and [1, ∞]:

𝐼 = 2 ∫
∞

0

𝑑𝑡√
𝑡(1 − 𝑡2) log ( 𝑡2 − 2𝑡 + 5

5𝑡2 − 2𝑡 + 1)

= 2 ∫
1

0

𝑑𝑡√
𝑡(1 − 𝑡2) log ( 𝑡2 − 2𝑡 + 5

5𝑡2 − 2𝑡 + 1) + 2 ∫
∞

1

𝑑𝑡√
𝑡(1 − 𝑡2) log ( 𝑡2 − 2𝑡 + 5

5𝑡2 − 2𝑡 + 1) . (8)
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We will do an inversion for the second piece by defining 𝑠 = 1
𝑡

𝐼2 = 2 ∫
∞

1

𝑑𝑡√
𝑡(1 − 𝑡2) log ( 𝑡2 − 2𝑡 + 5

5𝑡2 − 2𝑡 + 1)

= −2 ∫
0

1

(−𝑑𝑠/𝑠2)√𝑠
(𝑠2 − 1)/𝑠2 log ( 𝑠−2 − 2𝑠−1 + 5

5𝑠−2 − 2𝑠−1 + 1)

= −2 ∫
1

0

𝑑𝑠√𝑠
𝑠2 − 1 log (1 − 2𝑠 + 5𝑠2

5 − 2𝑠 + 𝑠2 ) = 2 ∫
1

0

𝑑𝑠√𝑠
1 − 𝑠2 log ( 5 − 2𝑠 + 𝑠2

1 − 2𝑠 + 5𝑠2 ) . (9)

𝑠 is a dummy integration variable, and we can rename it as 𝑡. Now let’s add 𝐼2 back in:

𝐼 = 2 ∫
1

0
𝑑𝑡 ( 1√

𝑡 +
√

𝑡) 1
(1 − 𝑡2) log ( 𝑡2 − 2𝑡 + 5

5𝑡2 − 2𝑡 + 1) = 2 ∫
1

0
𝑑𝑡 (1 + 𝑡√

𝑡 ) 1
1 − 𝑡2 log ( 𝑡2 − 2𝑡 + 5

5𝑡2 − 2𝑡 + 1)

= 2 ∫
1

0

𝑑𝑡√
𝑡(1 − 𝑡) log ( 𝑡2 − 2𝑡 + 5

5𝑡2 − 2𝑡 + 1) . (10)

More transformations

Let’s first get rid of the pesky
√

𝑡 term by defining 𝑡 = 𝑢2:

𝐼 = 4 ∫
1

0

𝑑𝑢
1 − 𝑢2 log ( 𝑢4 − 2𝑢2 + 5

5𝑢4 − 2𝑢2 + 1) . (11)

We then massage the 𝑑𝑢
1−𝑢2 term a bit using fractional expansion:

4𝑑𝑢
1 − 𝑢2 = 4𝑑𝑢

(1 − 𝑢)(1 + 𝑢) = 2𝑑𝑢 ( 1
1 + 𝑢 + 1

1 − 𝑢) = 2 (𝑑 [log(1 + 𝑢)] − 𝑑 [log(1 − 𝑢)])

= 2𝑑 [log (1 + 𝑢
1 − 𝑢)] , (12)

which basically prepares us for an integration by parts.
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𝐼 = 2 ∫
1

0
𝑑 [log (1 + 𝑢

1 − 𝑢)] log ( 𝑢4 − 2𝑢2 + 5
5𝑢4 − 2𝑢2 + 1)

= 2 ∫
1

0
𝑑 [log (1 + 𝑢

1 − 𝑢) log ( 𝑢4 − 2𝑢2 + 5
5𝑢4 − 2𝑢2 + 1)] − 2 ∫

1

0
log (1 + 𝑢

1 − 𝑢) 𝑑 [log ( 𝑢4 − 2𝑢2 + 5
5𝑢4 − 2𝑢2 + 1)]

= [log (1 + 𝑢
1 − 𝑢) log ( 𝑢4 − 2𝑢2 + 5

5𝑢4 − 2𝑢2 + 1)]
1

0
− 2 ∫

1

0
𝑑𝑢 log (1 + 𝑢

1 − 𝑢) 5𝑢4 − 2𝑢2 + 1
𝑢4 − 2𝑢2 + 5

𝑑
𝑑𝑢 ( 𝑢4 − 2𝑢2 + 5

5𝑢4 − 2𝑢2 + 1)

= −2 ∫
1

0
𝑑𝑢 log (1 + 𝑢

1 − 𝑢) 5𝑢4 − 2𝑢2 + 1
𝑢4 − 2𝑢2 + 5

(4𝑢3 − 4𝑢)(5𝑢4 − 2𝑢2 + 1) − (5𝑢4 − 2𝑢2 + 1)(4𝑢3 − 4𝑢)
(5𝑢4 − 2𝑢2 + 1)2

= −32 ∫
1

0
𝑑𝑢 log (1 + 𝑢

1 − 𝑢) 𝑢5 − 6𝑢3 + 𝑢
(𝑢4 − 2𝑢2 + 5)(5𝑢4 − 2𝑢2 + 1). (13)

Finally, it is more convenient to have a simple variable as the argument of the logarithm. We
get that by defining 𝑢 = 𝑣−1

𝑣+1 :

𝐼 = 8 ∫
∞

0
𝑑𝑣 log 𝑣 (𝑣2 − 1)(𝑣4 − 6𝑣2 + 1)

𝑣8 + 4𝑣6 + 70𝑣4 + 4𝑣2 + 1. (14)

This is practically begging for complex integration with a branch cut!

Complex contour integral

We are going to use a trick that I discussed in one of my earlier posts. When we are dealing
with integrand of the form 𝑃(𝑥)

𝑄(𝑥) , we can introduce a log multiplier and do the integral over a
key-hole contour as in Figure 1. As I showed in that post, the real parts of the log(𝑧) integrals
will cancel out as we traverse the contour above (𝐶2) and below (𝐶1) the real axis.
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Figure 1: Key-hole contour to evaluate the integral.

Note that our original integral already has a log in it, so we will double down on it and consider
a log2 term. When all said and done, one of the logs will drop out and we will collect the
integral with a single log along with the ratio of the polynomials. We will first upgrade the real
parameter 𝑣 to a complex parameter 𝑧 and consider the following closed contour integral:

𝐼𝐶 = 8 ∮
𝑐

𝑑𝑧 (log 𝑧)2 (𝑧2 − 1)(𝑧4 − 6𝑧2 + 1)
𝑧8 + 4𝑧6 + 70𝑧4 + 4𝑧2 + 1 ≡ ∮

𝑐
𝑑𝑧 log2(𝑧)𝑃 (𝑧)

𝑄(𝑧) , (15)

where the contour of the integration is shown in Figure 1. The paths 𝐶1 and 𝐶2 are almost
identical except for the fact that they go in the opposite direction and one is above the real
line and the other one is below it. They can be parameterized as 𝑧 = 𝑣±𝑖𝛿, where we will take
the 𝛿 → 0 limit. The polynomials behave nicely, so we can set 𝛿 = 0 right away for them. But,
log is tricky and it will have a jump of 2𝜋 across the branch cut. An easier parameterization
is to take 𝑧 = 𝑣𝑒𝑖𝛿 on 𝐶1 and 𝑧 = 𝑣𝑒𝑖(2𝜋−𝛿) on 𝐶2 such that the angles are defined from 0 to
2𝜋 and we don’t cross the branch cut. This will enable us to evaluate the logs quickly. Let’s
take a close look at the integrand, log2(𝑧) 𝑃(𝑧)

𝑄(𝑧) , on the paths 𝐶1 and 𝐶2:
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lim
𝛿→0;𝜖→0

{∫
𝐶1+𝐶2

log2(𝑧)𝑃 (𝑧)
𝑄(𝑧)} = lim

𝛿→0;𝜖→0
{∫

∞

𝜖
𝑑𝑣 [log(𝑣𝑒𝑖𝛿)]2 𝑃(𝑣𝑒𝑖𝛿)

𝑄(𝑣𝑒𝑖𝛿)

+ ∫
𝜖

∞
[log(𝑣𝑒𝑖(2𝜋−𝛿))]2 𝑃(𝑣𝑒𝑖(2𝜋−𝛿))

𝑄(𝑣𝑒𝑖(2𝜋−𝛿))}

= ∫
∞

0
𝑑𝑣 log2 𝑣𝑃(𝑣)

𝑄(𝑣) + ∫
0

∞
(2𝜋𝑖 + log 𝑣)2 𝑃(𝑣)

𝑄(𝑣)

= ∫
∞

0
𝑑𝑣𝑃(𝑣)

𝑄(𝑣) [log2 𝑣 + 4𝜋2 − 4𝜋𝑖 log 𝑣 − log2 𝑣]

= ∫
∞

0
𝑑𝑣𝑃(𝑣)

𝑄(𝑣) [4𝜋2 − 4𝜋𝑖 log 𝑣] , (16)

which is awesome! We have shown that the integration on the horizontal paths reduces down
to the integral we were looking for; almost! We ended up getting one additional integral with
the coefficient 4𝜋2. Let’s deal with it! We can see from Eq.15 that we still have 𝑧 → 1/𝑧
symmetry in the polynomials and we can exploit that to split the integral in two pieces:

∫
∞

0
𝑑𝑣𝑃(𝑣)

𝑄(𝑣) = ∫
1

0
𝑑𝑣𝑃(𝑣)

𝑄(𝑣) + ∫
∞

1
𝑑𝑣𝑃(𝑣)

𝑄(𝑣) . (17)

We flip the second integral by defining 𝑣 = 1/𝑠 to get:

∫
∞

0
𝑑𝑣𝑃(𝑣)

𝑄(𝑣) = ∫
1

0
𝑑𝑣𝑃(𝑣)

𝑄(𝑣) + ∫
0

1
(−𝑑𝑠/𝑠2)−𝑠−6𝑃(𝑠)

𝑠−8𝑄(𝑠)

= ∫
1

0
𝑑𝑣𝑃(𝑣)

𝑄(𝑣) − ∫
1

0
𝑑𝑠𝑃(𝑠)

𝑄(𝑠) = 0, (18)

and how cool is that! It simply vanishes! Let’s be rigorous and show that the other pieces of
the integrals on 𝐶𝜖 and 𝐶𝑅 also vanish in the limit 𝜖 → 0 and 𝑅 → ∞.

On 𝐶𝜖, the absolute value of the integrand is smaller than log(𝜖), and therefore the integral
will be smaller than 2𝜋𝜖 log(𝜖), which converges to 0 as 𝜖 goes faster to zero than log(𝜖) goes
to infinity. If you prefer a bit more rigor, we can do the following:

lim
𝜖→0

𝜖 log(𝜖) = lim
𝜖→0

log(𝜖)
1/𝜖 = lim

𝜖→0

1
𝜖

−1/𝜖2 = 0, (19)

where we used L’Hôpital’s rule.

On 𝐶𝑅, the absolute value of the integrand is smaller than log2(𝑅)/𝑅2, and therefore the
integral will be smaller than 2𝜋 log2(𝑅)/𝑅. We can see how it behaves as 𝑅 → ∞ as follows:

lim
𝑅→∞

log2(𝑅)
𝑅 = 2 lim

𝑅→∞
log(𝑅)

𝑅 = 0. (20)
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This shows that

𝐼 = 1
4𝜋𝑖 ∮

𝑐
𝑑𝑧 (log 𝑧)2 8(𝑧2 − 1)(𝑧4 − 6𝑧2 + 1)

𝑧8 + 4𝑧6 + 70𝑧4 + 4𝑧2 + 1 = 1
4𝜋𝑖2𝜋𝑖 ∑

𝑘
Residue(𝑧𝑘) = 1

2 ∑
𝑘

Residue(𝑧𝑘), (21)

where 𝑧𝑘’s are the poles inside the contour.

Finding the residues

Finding the roots of the denominator and the corresponding residues is no easy task. Let us
first explore the symmetries of 𝑄(𝑧) = 𝑧8 + 4𝑧6 + 70𝑧4 + 4𝑧2 + 1. Note that it is even in the
powers of 𝑧 and enjoys 𝑧 → −𝑧 symmetry, and we might express it as product of two functions:
𝑄(𝑧) = 𝑞(𝑧)𝑞(−𝑧). We can immediately write down the highest and the lowest power terms
in 𝑞(𝑧): 𝑞(𝑧) = 𝑧4 + 𝑎𝑧3 + 𝑏𝑧2 + 𝑐𝑧 + 1. We can find 𝑎 and 𝑏 by matching the terms.

𝑄(𝑧) = 𝑧8 + 4𝑧6 + 70𝑧4 + 4𝑧2 + 1 = 𝑞(𝑧)𝑞(−𝑧) = (𝑧4 + 𝑎𝑧3 + 𝑏𝑧2 + 𝑐𝑧 + 1)(𝑧4 − 𝑎𝑧3 + 𝑏𝑧2 − 𝑐𝑧 + 1)
= 𝑧8 + (−𝑎2 + 2𝑏)𝑧6 + (2 − 2𝑎𝑐 + 𝑏2)𝑧4 + (2𝑏 − 𝑐2)𝑧2 + 1. (22)

Matching the coefficients, and solving three equations in three unknowns with some help from
Mathematica we get:

𝑞(𝑧) = 𝑧4 + 4𝑧3 + 10𝑧2 + 4𝑧 + 1. (23)

Now we will attempt to use fractional expansion:

8(𝑧2 − 1)(𝑧4 − 6𝑧2 + 1)
𝑧8 + 4𝑧6 + 70𝑧4 + 4𝑧2 + 1 = [𝐴(𝑧)

𝑞(𝑧) + 𝐴(−𝑧)
𝑞(−𝑧) ] , (24)

where we assigned 𝐴(−𝑧) as the second coefficient, rather than a new function 𝐵(𝑧), because
the whole expression needs to preserve 𝑧 → −𝑧 symmetry. We can guess the degree of the
𝐴(𝑧) by observing that 𝐴(𝑧)𝑞(−𝑧) + 𝐴(−𝑧)𝑞(𝑧) needs to be at the 6 order, however 𝐴(𝑧)𝑞(−𝑧)
can have a 7th degree term which will drop out up on the subtraction. Since 𝑄 is quartic, this
leaves 𝐴 at the cubic order at most. Let’s try

𝐴(𝑧) = 𝛼𝑧3 + 𝛽𝑧2 + 𝜃𝑧 + 𝜁, (25)

and require

8(𝑧2 − 1)(𝑧4 − 6𝑧2 + 1) = 𝐴(𝑧)𝑞(−𝑧) + 𝐴(−𝑧)𝑞(𝑧)
= (𝛼𝑧3 + 𝛽𝑧2 + 𝜃𝑧 + 𝜁)(𝑧4 − 4𝑧3 + 10𝑧2 − 4𝑧 + 1)

+(−𝛼𝑧3 + 𝛽𝑧2 − 𝜃𝑧 + 𝜁)(𝑧4 + 4𝑧3 + 10𝑧2 + 4𝑧 + 1). (26)
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We can fix 𝜁 immediately by tracking the constant terms on the left and on the right: −8 =
2𝜁 ⟹ 𝜁 = −4. And matching 𝑧6 terms results in 8 = −8𝛼 + 2𝛽. Matching 𝑧4 terms results
in −56 = 2𝜁 − 8𝜃 + 20𝛽 − 8𝛼. Matching 𝑧2 terms gives: −56 = 2𝛽 + 20𝜁 − 8𝜃. Solving all of
these together we have:

𝐴(𝑧) = − (4𝑧3 + 12𝑧2 + 20𝑧 + 4) . (27)

Staring at Eqs. 23 and 27, we realize that we ended up with some remarkable relation:

𝐴(𝑧) = −𝑞′(𝑧). (28)

This allows us to write the whole ratio in a nice and compact way:

8(𝑧2 − 1)(𝑧4 − 6𝑧2 + 1)
𝑧8 + 4𝑧6 + 70𝑧4 + 4𝑧2 + 1 = − [𝑞′(𝑧)

𝑞(𝑧) + 𝑞′(−𝑧)
𝑞(−𝑧) ] , (29)

with 𝑞(𝑧) defined in Eq. 23. This is more than a gimmick! It will enable us to compute the
residues in a very elegant way.

Consider a generic case 𝑓(𝑧)
𝑔(𝑧) for which we want to compute the residues, say, for a first order

pole at 𝑧 = 𝑧𝑘. For an analytic function, all we need to do is to look around the poles. To this

end, we can expand 𝑔(𝑧) around 𝑧𝑘 to get 𝑔(𝑧) = ���*0
𝑔(𝑧𝑘) + (𝑧 − 𝑧𝑘)𝑔′(𝑧𝑘) + H.O.T. in (𝑧 − 𝑧𝑘).

And the ratio becomes 𝑓(𝑧𝑘)
𝑔′(𝑧𝑘)

1
𝑧−𝑧𝑘

, which simply integrates to 2𝜋𝑖 𝑓(𝑧𝑘)
𝑔′(𝑧𝑘) if it is the only pole.

The beautiful simplification in our case in Eq. 29. is that 𝑓(𝑧) = 𝑔′(𝑧), and therefore the
contribution of the pole 𝑧𝑘 is simply 2𝜋𝑖. As for the 𝑞′(−𝑧)/𝑞(𝑧) part, it will be the same except
for the sign, which can be shown as follows: 𝑞′(−𝑧)/𝑞(−𝑧) = 𝑑𝑞(−𝑧)

𝑑𝑧 /𝑞(−𝑧) = −𝑑𝑞(−𝑧)
𝑑(−𝑧) /𝑞(−𝑧),

i.e., it picks up a minus sign.

Now it is finally time to compute the location of the poles. We started with an 8th order
polynomial, which was hopeless. But we split that into two 4th order polynomials as in Eq. 23.
𝑞(𝑧) still enjoys 𝑧 → 1/𝑧 symmetry, and we can say that if there is a pole a 𝑎, there should be
one at 1/𝑎. Furthermore, the other poles should be at the complex conjugate points so that
when we expand everything out we get a polynomial with real coefficients. Hence, this is what
we conjecture:

𝑞(𝑧) = 𝑧4 + 4𝑧3 + 10𝑧2 + 4𝑧 + 1 = (𝑧 − 𝑎)(𝑧 − 1
𝑎)(𝑧 − ̄𝑎)(𝑧 − 1

̄𝑎). (30)

Now, we expand this out and insert 𝑎 = 𝑟𝑒𝑖𝜃:

(𝑟 + 1
𝑟 ) cos 𝜃 = −2, (31)

(𝑟2 + 1
𝑟2 ) + 4 cos2 𝜃 = 10. (32)
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The solution becomes: 𝑟 = 𝜙+√𝜙 and cos 𝜃 = 1/𝜙, where 𝜙 = 1+
√

5
2 is the golden ratio. Using

the relation 1
𝜙+√𝜙 = 𝜙 − √𝜙, we can list the poles of 𝑞(𝑧) like so:

𝑧± = (𝜙 ± √𝜙)𝑒𝑖 arctan
√𝜙, and 𝑧±̄ = (𝜙 ± √𝜙)𝑒−𝑖 arctan

√𝜙 (33)

The poles of 𝑞(−𝑧) will simply require a sign change. We can combine all 8 poles in a compact
notation:

𝑧𝑘 = ±(𝜙 ± √𝜙)𝑒±𝑖 arctan
√𝜙, (34)

which is shown in Figure 2 .

Figure 2: The potential for 𝐼
𝐼𝑐

= 0.95.
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As we have figured out the residues at the poles, we now need to understand log2 𝑧𝑘 terms.
Using 𝑧𝑘 = |𝑧𝑘|𝑒𝑖 arg(𝑧𝑘), we get:

log2 𝑧𝑘 = (log 𝑧𝑘)2 = (log |𝑧𝑘| + 𝑖 arg(𝑧𝑘))2 = log2 |𝑧𝑘| + 2𝑖 log |𝑧𝑘| arg(𝑧𝑘) − (arg(𝑧𝑘))2. (35)

log2 |𝑧𝑘| is the easiest to address because it is a constant across all poles. Remember that
the poles, 𝑧𝑘’s, are at 𝑎, 1/𝑎, ̄𝑎, and 1/ ̄𝑎, each of which will have the same log2 |𝑧𝑘| value.
Therefore, as we sum over the residues, which alternate between +1 and −1 due, this constant
term will drop out.

Let’s look at log |𝑧𝑘| arg(𝑧𝑘) term multiplied by the residues: Consider 𝑧0, which has a residue
of +1. Its radius inversion pair, 𝑧1, also has +1 residue, but |𝑧1| = 1/|𝑧0| and that causes the
log |𝑧1| = − log |𝑧0|. These two terms cancel each other. We can see the pairwise cancellation
for all the remaining poles, therefore log |𝑧𝑘| arg(𝑧𝑘) vanish up on summing over all the residues.
We are down to single term, we we just need to sum it up and write down our final equation:

𝐼 = 1
4𝜋𝑖 ∮

𝑐
𝑑𝑧 (log 𝑧)2 8(𝑧2 − 1)(𝑧4 − 6𝑧2 + 1)

𝑧8 + 4𝑧6 + 70𝑧4 + 4𝑧2 + 1 = 1
2 ∑

𝑘
Residue(𝑧𝑘)

= 1
2 [

7
∑
𝑘=0

Residue(𝑧𝑘)(arg(𝑧𝑘))2] = 1
2 [

3
∑
𝑘=0

(arg(𝑧𝑘))2 −
7

∑
𝑘=4

(arg(𝑧𝑘))2]

= 1
2 [2 (arctan √𝜙)2 + 2 (2𝜋 − arctan √𝜙)2 − 2 (𝜋 − arctan √𝜙)2 − 2 (𝜋 + arctan √𝜙)2]

= 2𝜋2 − 4𝜋 arctan √𝜙 = 4𝜋arccot √𝜙, (36)

which concludes the integration!
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