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A comprehensive guide to combining statistical information from separate exper-
imental runs when data sets cannot be merged due to confounding factors. This
post addresses the challenge of computing joint confidence intervals and p-values
from multiple independent experiments.
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Introduction

The goal is to combine information from separate experimental runs to quote a single number
to assess the difference of two groups in the data. This would be a case where one cannot
combine the data sets due to confounding factors. We will discuss two ways of combining
statistics:

• Computing joint 𝑝-values,
• Computing joint confidence intervals.

Sampling statistics

The end goal of statistics is to estimate the true values of the population parameters, such as
the mean value 𝜇 and the variance 𝜎2. We try to get a sense of what 𝜇 could be by pulling 𝑁
samples from the population and studying it. Each sample is a random variable, 𝑆𝑖, and we
can compute their average

̄𝑆 = 1
𝑁

𝑁
∑
𝑖=1

𝑆𝑖. (1)
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𝑆 itself is a random variable: it will be different if you pick up another set of 𝑁 samples. We
can also compute its expected value

𝐸[ ̄𝑆] = 1
𝑁

𝑁
∑
𝑖=1

𝐸[𝑆𝑖] = 𝜇, (2)

and its variance

Var[ ̄𝑆] = 1
𝑁2

𝑁
∑
𝑖=1

Var[𝑆𝑖] = 𝜎2

𝑁 . (3)

Furthermore, by central limit theorem, we know that for large 𝑁 ̄𝑆 will be normally distributed,
denoted as

̄𝑆 ∼ 𝒩 (𝜇, 𝜎2

𝑁 ) . (4)

𝑝-Values

The P value is the probability of obtaining a result equal to or larger than what was actually
observed assuming the null hypothesis is true. It does not give the probability of the null
hypothesis is true or not. Figure 1 illustrates the 𝑝−value.

p−value

observed data

Figure 1: Illustration of 𝑝−value.

Such a number can be computed for any distribution and should be compared against 𝛼, which
determines how extreme the data must be for the null hypothesis to be rejected. For example,
for 𝛼 = 5%, 𝑝 < 0.05 will result in the rejection of the null hypothesis.
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Pooling 𝑝−values

A way of pooling 𝑝−values is proposed in [1] as a harmonic sum

1
̄𝑝 =

∑𝑛
𝑖=1

𝑁𝑖
𝑝𝑖

∑𝑛
𝑖=1 𝑁𝑖

(5)

where 𝑁𝑖’s are the samples sizes, and 𝑝𝑖’s are the individual 𝑝−values computed for each
experiment, and 𝑛 is the number of experiments to be pooled. For equal sample sizes, this
simplifies to

1
̄𝑝 =

∑𝑛
𝑖=1

1
𝑝𝑖

𝑛 (6)

This will result in a single number that will represent the results combining from all experi-
mental runs.

Confidence intervals

When the true values of the population parameters, 𝜇 and 𝜎2 are unknown, we can replace
them with the sample statistics ̂𝜇 and 𝜎̂2

̄𝑆 ∼ 𝒩 ( ̂𝜇, 𝜎̂2

𝑁 ) . (7)

We are trying to estimate 𝜇 and 𝜎2 based on the data we sample. This is illustrated in
Figure 2.

Figure 2: Population vs Sample statistics. Image taken from UF Biostatistics text book

Equation 7 tells us that the sample mean value, ̂𝜇, will vary from as we get another set of 𝑁
samples. And we do not necessarily know its relative position with respect to the population
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mean 𝜇. We want to create an interval around the ̂𝜇 such that we can estimate whether 𝜇
will happen to be in that interval. It is important to notice that this is more about creating
a procedure to create an interval which, if repeated, will contain the population mean value
𝜇. Assume you have a method of creating confidence intervals(CI), say with 95% confidence,
which we will discuss later, below is what it means:

• You pull 𝑁 samples and compute the interval with the data.

– 𝜇 is not guaranteed to be in the interval.
– You cannot say it will be in the interval with 95% probability. It is either in or out.

This is not probabilistic.

• You go back and pull 𝑁 new samples.

– Note that you will have a new ̂𝜇 and a new confidence interval. 𝜇 may or may not
be in it.

• If you repeat the process many times, if your method of computing intervals is correct,
95% of the intervals you computed will include the true value 𝜇.

• The process is illustrated in Figure 3.

Figure 3: Repeting a 95% confidence interval computation 20 times will result in CIs containing
the population parameter 19 out of 20 times. Image taken minitab blog.

To compute the confidence intervals, it is convenient to define the following random variable:

𝑍 =
̄𝑆 − ̂𝜇
𝜎̂√
𝑁

(8)

If the sample size is large (𝑁 >∼ 30), this particular random variable will have standard normal
distribution1. A confidence level of 𝑐 corresponds to a 𝑧∗ value such that the area under the
standard normal distribution between −𝑧∗ and 𝑧∗ is 𝑐. Equivalently, the area outside on each
side will be 1−𝑐

2 = 𝛼
2 , where 𝛼 ≡ 1 − 𝑐. Take an example of 95% confidence level, which yields

𝛼 = 0.05. The value of 𝑧∗ in this case will be 1.96 so that 2.5% of the total area lies under each
tail, i.e., |𝑧| > 1.96. Rearranging Eq. 8 shows that 95% CI is from ̂𝜇 − 1.96 𝜎̂√

𝑁 to ̂𝜇 + 1.96 𝜎̂√
𝑁 .

Figure 3 shows this for generic 𝑐.

1for 𝑁 <∼ 30, it will be 𝑡-distribution. Here we will assume sample size is large enough
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Figure 4: Illustration of confidence intervals with confidence level of 𝑐.

A confidence interval with confidence level 𝑐 is constructed by finding the critical values ±𝑧𝛼/2
such that the area under the standard normal distribution between these values equals 𝑐. The
remaining area 𝛼 = 1 − 𝑐 is split equally between the two tails, with each tail containing area
𝛼/2.

Pooling multiple confidence levels

Assume you have two sets of data, and you can compute ̂𝜇, 𝜎̂ and the corresponding CIs for
each set of data. How would you combine these two sets to produce joint CIs? We can do this
by pooling the estimates as follows:

̄𝑆 = 𝑁1 ̄𝑆1 + 𝑁2 ̄𝑆2
𝑁1 + 𝑁2

(9)

where subscripts label the data sets. ̄𝑆 is yet another normal random variable, and we can
compute its expected value as

𝐸[ ̄𝑆] = 𝑁1 ̂𝜇1 + 𝑁2 ̂𝜇2
𝑁1 + 𝑁2

, (10)

and its variance:

Var[ ̄𝑆] = 𝑁2
1 Var[ ̄𝑆1] + 𝑁2

2 Var[ ̄𝑆2]
(𝑁1 + 𝑁2)2 =

𝑁2
1

𝜎̂2
1

𝑁1
+ 𝑁2

2
𝜎̂2

2
𝑁2

(𝑁1 + 𝑁2)2 = 𝑁1𝜎̂2
1 + 𝑁2𝜎̂2

2
(𝑁1 + 𝑁2)2 . (11)

Therefore, the pooled estimator becomes

̄𝑆 ∼ 𝒩 (𝑁1 ̂𝜇1 + 𝑁2 ̂𝜇2
𝑁1 + 𝑁2

, 𝑁1𝜎̂2
1 + 𝑁2𝜎̂2

2
(𝑁1 + 𝑁2)2 ) , (12)
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which completely defines the joint distribution. One can easily compute the corresponding CI
as

[𝑁1 ̂𝜇1 + 𝑁2 ̂𝜇2
𝑁1 + 𝑁2

− 𝑧 𝛼
2

√𝑁1𝜎̂2
1 + 𝑁2𝜎̂2

2
𝑁1 + 𝑁2

, 𝑁1 ̂𝜇1 + 𝑁2 ̂𝜇2
𝑁1 + 𝑁2

+ 𝑧 𝛼
2

√𝑁1𝜎̂2
1 + 𝑁2𝜎̂2

2
𝑁1 + 𝑁2

] . (13)

For equal sample sizes, 𝑁1 = 𝑁2 = 𝑁 , we get

[ ̂𝜇1 + ̂𝜇2
2 − 𝑧 𝛼

2

√𝜎̂2
1 + 𝜎̂2

2
2 , ̂𝜇1 + ̂𝜇2

2 + 𝑧 𝛼
2

√𝜎̂2
1 + 𝜎̂2

2
2 ] , (14)

which is the final result expressing the CI in terms of the statistical parameters of both exper-
iments.

Visualization

Figure 5: Curves showing the distribution of the mean value based on sample 1 and 2 data
and the computed joint distribution.
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Figure 6: Curves showing the distribution of the mean value based on sample 1 and 2 data
and the computed joint distribution.
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