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This blog post provides a comprehensive treatment of magnetic dipoles, starting
from first principles. We begin by deriving the vector potential for an arbitrary
current distribution and apply it to the specific case of a circular current loop.
The exact solution is expressed in terms of complete elliptic integrals, and we
provide explicit forms for the magnetic field in both spherical and cylindrical co-
ordinates. We then develop the magnetic dipole approximation, showing how it
emerges naturally as the leading term in a multipole expansion. Finally, we extend
our analysis to continuous distributions of magnetic moments, introducing the con-
cept of bound currents and demonstrating how they provide an elegant framework
for describing magnetized materials. Throughout, we emphasize the mathematical
techniques and physical insights that connect these various aspects of magnetic
dipole physics.
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Vector Potential

The magnetic field at an arbitrary point r created by a current distribution J(r′) is given by
the Biot-Savart law[1]:

B(r) = 𝜇0
4𝜋 ∫ 𝑑3r′ J(r′) × (r − r′)

(r − r′)3 , (1)

where we use the primed coordinates for the source points. We can convert this to a curl of a
vector potential using the following identity:

∇ 1
|r − r′| = − r − r′

|r − r′|3 . (2)
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Putting this into Eq. 1 we get:

B(r) = −𝜇0
4𝜋 ∫ 𝑑3r′J(r′) × ∇ 1

|r − r′| = ∇ × [𝜇0
4𝜋 ∫ 𝑑3r′ J(r′)

|r − r′|] ≡ ∇ × A(r). (3)

Equation 3 enables us to define a vector potential for an arbitrary current distribution:

A(r) = 𝜇0
4𝜋 ∫ 𝑑3r′ J(r′)

|r − r′| . (4)

Vector Potential of a Single Loop

We consider the magnetic field of a single circular loop with a current as in Figure 1.
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Figure 1: A loop of wire with radius 𝑅 carrying a current 𝐼 .

For a single loop sitting at 𝑧 = 0 with radius 𝑟 = 𝑅, it is convenient to work in spherical
coordinates.

J(r′) = 𝜆𝛿(𝑟′ − 𝑅)𝛿(cos 𝜃′) ̂�′ = 𝜆𝛿(𝑟′ − 𝑅)𝛿(cos 𝜃′) (cos 𝜙′ ̂j − sin 𝜙′ ̂i) , (5)

2



where 𝜆 is the current density. In order to calculate 𝜆 for a loop of wire carrying a current 𝐼 ,
let’s intercept the loop with an area perpendicular to it. We can do that by selecting an area
on, say, positive 𝑥 axis ( i.e., 𝜙′ = 0), pointing along the 𝑦 axis, i.e., 𝑑S′ = 𝑑𝑆′ ̂j = 𝑟′𝑑𝑟′𝑑𝜃′ ̂j.
Integrating the current density on this area we should get the total current:

∫
𝑆

𝑑S′ ⋅ J(r) = ∫
𝑆

𝑟′𝑑𝑟′𝑑𝜃′𝜆𝛿(𝑟′ − 𝑅)𝛿(cos 𝜃′) ̂j ⋅ (cos 𝜙′ ̂j − sin 𝜙′ ̂i) ∣
𝜙′=0

= 𝑅𝜆 = 𝐼

⟹ 𝜆 = 𝐼/𝑅. (6)

Therefore, the properly normalized current is

J(r′) = 𝐼
𝑅𝛿(𝑟′ − 𝑅)𝛿(𝑧′) ̂�′ = 𝐼

𝑅𝛿(𝑟′ − 𝑅)𝛿(cos 𝜃′) (cos 𝜙′ ̂j − sin 𝜙′ ̂i) . (7)

The integral we have to deal with for a single loop is this:

A(r) = 𝜇0
4𝜋 ∫ 𝑑3r′ J(r′)

|r − r′| = 𝜇0𝐼
4𝜋𝑅 ∫ 𝑑3r′ 1

|r − r′| 𝛿(𝑟′ − 𝑅)𝛿(cos 𝜃′) (cos 𝜙′ ̂j − sin 𝜙′ ̂i) , (8)

where we put the subscript 𝑠 to remind us that this is for a single loop. We will parameterize
the points on the loop centered at 𝑧 = 0 as r′ = 𝑟′(cos 𝜙′ ̂i + sin 𝜙′ ̂j), and the observation point
as r = 𝑟 cos 𝜃 ̂z + 𝑟 sin 𝜃(cos 𝜙 ̂i + sin 𝜙 ̂j)

|r − r′| = √𝑟2 cos2 𝜃 + (𝑟 sin 𝜃 cos 𝜙 − 𝑟′ cos 𝜙′)2 + (𝑟 sin 𝜃 sin 𝜙 − 𝑟′ sin 𝜙′)2

= √𝑟2 + 𝑟′2 − 2𝑟𝑟′ sin 𝜃 cos(𝜙′ − 𝜙). (9)

Note that the problem has rotational symmetry. We can rotate our coordinate system such
that the observation point sits on 𝑦 = 0, i.e., 𝜙 = 0. Once we are done with the computations,
we can rotate the vectors back to general r point. So let’s set 𝜙 = 0 in Eq. 9 and rewrite Eq.
8 :

A(r) = 𝜇0𝐼
4𝜋𝑅 ∫ sin 𝜃′𝑟′2𝑑𝑟′𝑑𝜙′ 𝛿(𝑟′ − 𝑅)𝛿(cos 𝜃′) (cos 𝜙′ ̂j − sin 𝜙′ ̂i)

√𝑟2 + 𝑟′2 − 2𝑟𝑟′ sin 𝜃 cos(𝜙′ − 𝜙)

= 𝜇0𝐼𝑅
4𝜋 [∫

2𝜋

0
𝑑𝜙′ cos 𝜙′ ̂j

√𝑟2 + 𝑅2 − 2𝑟𝑅 sin 𝜃 cos(𝜙′ − 𝜙)

−

���������������������:0

∫
2𝜋

0
𝑑𝜙′ sin 𝜙′ ̂i

√𝑟2 + 𝑅2 − 2𝑟𝑅 sin 𝜃 cos(𝜙′ − 𝜙)

⎤
⎥
⎥
⎥
⎦

, (10)
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where the second term vanishes since the integrand is odd and the integral is evaluated over
the full range. Note that we evaluated the integral at 𝜙 = 0, and the resulting potential points
in ̂j direction. For generic 𝜙 we can simply rotate the coordinate system about the 𝑧 axis by
𝜙. In this rotated coordinate system ̂j → ̂𝜙. Therefore the vector potential reads:

A(r) = ̂𝜙𝜇0𝐼𝑅
4𝜋 ∫

2𝜋

0
𝑑𝜙′ cos 𝜙′

√𝑟2 + 𝑅2 − 2𝑟𝑅 sin 𝜃 cos 𝜙′ . (11)

Let’s define 𝜙′ = 𝜋 − 𝜙′ to get cos 𝜙′ = − cos 𝜙′ and rewrite Eq. 11 as:

A(r) = − ̂𝜙𝜇0𝐼𝑅
4𝜋 ∫

𝜋

−𝜋
𝑑𝜙′ cos 𝜙′

√𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃 cos 𝜙′ . (12)

Let’s also use the half angle formula: cos 𝜙′ = 1 − 2 sin2 𝜙′

2 and reorganize the integral:

A(r) = − ̂𝜙𝜇0𝐼𝑅
4𝜋

1√
𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃

∫
𝜋

−𝜋
𝑑𝜙′ 1 − 2 sin2 𝜙′

2
√1 − 4𝑟𝑅 sin 𝜃

𝑟2+𝑅2+2𝑟𝑅 sin 𝜃 sin2 𝜙′
2

≡ − ̂𝜙𝜇0𝐼𝑅
4𝜋

1√
𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃

∫
𝜋

−𝜋
𝑑𝜙′ 1 − 2 sin2 𝜙′

2
√1 − 𝑘2 sin2 𝜙′

2

= − ̂𝜙𝜇0𝐼𝑅
4𝜋

1√
𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃

∫
𝜋

−𝜋
𝑑𝜙′ ⎡⎢

⎣

1
√1 − 𝑘2 sin2 𝜙′

2

− 2 sin2 𝜙′

2
√1 − 𝑘2 sin2 𝜙′

2

⎤⎥
⎦

= −�̂𝜇0𝐼𝑅
4𝜋𝑘2

1√
𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃

∫
𝜋

−𝜋
𝑑𝜙′ ⎡⎢

⎣

𝑘2 − 2
√1 − 𝑘2 sin2 𝜙′

2

+ 2√1 − 𝑘2 sin2 𝜙′

2
⎤⎥
⎦

,(13)

where 𝑘2 = 4𝑟𝑅 sin 𝜃
𝑟2+𝑅2+2𝑟𝑅 sin 𝜃 . Finally, we define 𝜁′ = 𝜙′/2 and split the integration into two

pieces to pick an overall factor of 4 to get:

A(r) = ̂𝜙 𝜇0𝐼𝑅
𝜋

√
𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃

(2 − 𝑘2)𝐾(𝑘2) − 2𝐸(𝑘2)
𝑘2 , (14)

where the elliptic integral are defined as follows:

𝐾(𝑘2) = ∫
𝜋
2

0

𝑑𝜃
√1 − 𝑘2 sin2 𝜃

,

𝐸(𝑘2) = ∫
𝜋
2

0
𝑑𝜃√1 − 𝑘2 sin2 𝜃. (15)
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Magnetic Field of a Single Loop

The calculation of the magnetic field is straightforward[2]:

𝐵𝑟 = 1
𝑟 sin 𝜃

𝜕
𝜕𝜃(sin 𝜃𝐴𝜙) = 𝜇0𝐼𝑅2 cos 𝜃𝐸(𝑘2)

𝜋
√

𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃(𝑟2 + 𝑅2 − 2𝑟𝑅 sin 𝜃)
,

𝐵𝜃 = −1
𝑟

𝜕
𝜕𝑟(𝑟𝐴𝜙) = 𝜇0𝐼 [(𝑟2 + 𝑅2 cos(2𝜃))𝐸(𝑘2) − (𝑟2 + 𝑅2 − 2𝑟𝑅 sin 𝜃)𝐾(𝑘2)]

2𝜋
√

𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃(𝑟2 + 𝑅2 − 2𝑟𝑅 sin 𝜃) sin 𝜃
. (16)

We can also express the magnetic field in the cylindrical coordinates [2]:

𝐵𝜌 = 𝜇0𝐼𝑧 [(𝑅2 + 𝜌2 + 𝑧2)𝐸(𝑘2) − (𝑅2 + 𝜌2 + 𝑧2 − 2𝑅𝜌))𝐾(𝑘2)]
2𝜋√𝑅2 + 𝜌2 + 𝑧2 + 2𝑅𝜌(𝑅2 + 𝜌2 + 𝑧2 − 2𝑅𝜌)𝜌

,

𝐵𝑧 = 𝜇0𝐼 [(𝑅2 − 𝜌2 − 𝑧2)𝐸(𝑘2) + (𝑅2 + 𝜌2 + 𝑧2 − 2𝑅𝜌))𝐾(𝑘2)]
2𝜋√𝑅2 + 𝜌2 + 𝑧2 + 2𝑅(𝑅2 + 𝜌2 + 𝑧2 − 2𝑅𝜌)𝜌

. (17)

Dipole Approximation

Although we worked out the complete solution for a single loop, it is worth finding an accurate
approximation. We can use the multipole expansion and decide on the number of terms to
keep. The full multipole expansion is involves the expansion of the potential in terms of the
Legendre polynomials. Just to keep things simple, we will use the dipole approximation to get
the leading term.

A(r) = ̂𝜙𝜇0𝐼𝑅
4𝜋 ∫

2𝜋

0
𝑑𝜙′ cos 𝜙′

√𝑟2 + 𝑅2 − 2𝑟𝑅 sin 𝜃 cos 𝜙′

= ̂𝜙𝜇0𝐼𝑅
4𝜋 ∫

2𝜋

0
𝑑𝜙′ cos 𝜙′

𝑟 [1 − 𝑅
𝑟 sin 𝜃 cos 𝜙′]

= ̂𝜙𝜇0𝐼𝜋𝑅2

4𝜋𝑟2 sin 𝜃 ≡ ̂𝜙𝜇0𝑀
4𝜋𝑟2 sin 𝜃, (18)

where we defined the magnetic moment 𝑀 = 𝐼𝜋𝑅2. Note that we can absorb ̂𝜙 and sin 𝜃
into a cross product of the magnetic moment and the unit vector pointing to the observation
point:

A(r) = ̂𝜙𝜇0𝑀
4𝜋𝑟2 sin 𝜃 ≡ 𝜇0𝑀

4𝜋𝑟2 ̂z × ̂r = 𝜇0
4𝜋𝑟2 M × ̂r, (19)
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where M = 𝐼𝜋𝑅2 ̂z is the magnetic moment in its vector form. It is important to note the
striking similarity between the magnetic dipole and the electric dipole, which has the electric
potential as follows:

𝑉 (r) = 1
4𝜋𝜖0𝑟2 P ⋅ ̂r, (20)

where P = 𝑒d is the polarization vector. The magnetic field corresponding to the potential in
Eq. 19 is:

B(r) = ∇ × A(r) = 𝜇0
4𝜋

𝑚
𝑟3 [2 cos 𝜃 ̂r + sin 𝜃 ̂�] = 𝜇0

4𝜋𝑟5 [3(M ⋅ r)r − 𝑟2M] . (21)

Bound Currents

Let’s start from Eq. 19 with the vector potential for created by sources M(r′):

A = 𝜇0
4𝜋 ∫ 𝑑3r′ 1

|r − r′|3 M(r′) × (r − r′). (22)

We will repeat the trick we used in the previous section see Eq. 2, but this time in the source
coordinates:

∇′ 1
|r − r′| = r − r′

|r − r′|3 . (23)

We will use this relation to rewrite the potential in Eq. 22 as follows:

A = 𝜇0
4𝜋 ∫ 𝑑3r′M(r′) × ∇′ 1

|r − r′| . (24)

We will want to move the gradient to the other side of the cross product, so we will use the
following vector identity:

∇′ × ( M
|r − r′|) = ∇′ × M

|r − r′| − M × (∇′ 1
|r − r′|) . (25)

This will result in a vector potential with two components:

A = 𝜇0
4𝜋 ∫ 𝑑3r′ ∇′ × M(r′)

|r − r′| − 𝜇0
4𝜋 ∫ 𝑑3r′∇′ × ( M(r′)

|r − r′|) . (26)

The first term is nice and simple, but the second term needs some work. It is in a rather
unusual form. Let’s us imagine projecting the resulting vector onto a constant vector c:

c ⋅ [∇′ × ( M
|r − r′|)] = ( M

|r − r′|) ⋅ (∇′ × c) − ∇′ ⋅ ( M
|r − r′| × c)

= −∇′ ⋅ ( M
|r − r′| × c) , (27)

6



which is in a form that can leverage the Gauss’ divergence theorem. The projected form of
the second term is:

−𝜇0
4𝜋 ∫ 𝑑3r′c ⋅ [∇′ × ( M

|r − r′|)] = 𝜇0
4𝜋 ∫ 𝑑3r′∇′ ⋅ ( M

|r − r′| × c)

= 𝜇0
4𝜋 ∫ 𝑑2S ⋅ ( M

|r − r′| × c)

= 𝜇0
4𝜋 ∫ c ⋅ ( M

|r − r′| × 𝑑2S) . (28)

Since c is arbitrary, the relation is valid for any component. Putting all off it together, we
get:

A = 𝜇0
4𝜋 ∫

𝑉

J𝑏(r′)
|r − r′| 𝑑3r′ + 𝜇0

4𝜋 ∫
𝑆

K𝑏(r′)
|r − r′| 𝑑a′. (29)

where we defined the bound current densities as follows:

J𝑏 ≡ ∇′ × M, and K𝑏 ≡ M × n̂, (30)

where n̂ is the unit normal to the surface.
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