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This article explores the mathematical principles behind low-pass RC filters, with
a focus on their response to Pulse Width Modulation (PWM) signals. Through
interactive visualizations, we demonstrate how these fundamental circuits process
digital signals, showing the relationship between the time constant (RC), duty cycle,
and the resulting output voltage. Readers can experiment with different parame-
ters to understand how the filter smooths out PWM signals into analog voltages,
making this complex topic both accessible and practical. This understanding is
essential for anyone working with digital-to-analog conversion, motor control, or
signal processing applications.
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Introduction

I have been using Arduino UNO for various projects. Unfortunately it lacks a proper analog
output, and requires a low pass filter to convert its pulse width modulated (PWM) signal to
analog voltage. It is a simple RC circuit, but the values of the resistor and capacitor need to
be selected carefully to avoid fluctuations. This is a mathematical analysis of the circuit to
derive the exact equation for the output voltage.

The RC circuit

The circuit is very simple, and it consists of only two components: a resistor and a capacitor.
The input is a pulse-width modulated signal, and the output is the filtered voltage across the
capacitor.
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Figure 1: A low pass filter.

Kirchhoff’s Voltage Law results in the following equation:

−𝑣(𝑡) + 𝑖(𝑡)𝑅 + 𝑣𝑐(𝑡) = 0, (1)

where the current 𝑖 can be eliminated using the charge conservation equation:

𝑖(𝑡) = 𝑑𝑄
𝑑𝑡 = 𝐶 𝑑𝑣𝑐

𝑑𝑡 . (2)

Therefore the equation we need to solve becomes

𝑣(𝑡) + 𝑅𝐶 𝑑𝑣𝑐
𝑑𝑡 + 𝑣𝑐(𝑡) = 0. (3)

Solving the DE

There are multiple ways of solving Eq. 3. For example, if we are interested in the steady state
solutions only, we can simply use fourier series expansion. In this analysis, I will want to keep
track of the initial conditions and provide a complete solution using Laplace transformation,
which is defined as follows:

𝐹(𝑠) = ℒ [𝑓(𝑡)] = ∫
∞

0
𝑑𝑡 𝑒−𝑠 𝑡𝑓(𝑡), (4)

where I follow the convention of denoting the functions in the 𝑠 space in capital letters. The
transformation of the derivatives can be derived from the definition:

ℒ [𝑑𝑓
𝑑𝑡 ] = ∫

∞

0
𝑑𝑡 [𝑒−𝑠 𝑡 𝑑𝑓

𝑑𝑡 ] = ∫
∞

0
𝑑𝑡 [ 𝑑

𝑑𝑡 [𝑒−𝑠 𝑡𝑓(𝑡)] − 𝑓(𝑡) 𝑑
𝑑𝑡𝑒−𝑠 𝑡] = 𝑠𝐹(𝑠) − 𝑓(0) (5)

Eq. 3 in the 𝑠 domain reads:

−𝑉 + 𝑅𝐶 (𝑠𝑉𝑐 − 𝑣𝑐(0)) + 𝑉𝑐 = 0, (6)
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where 𝑣𝑐(0) is the initial value of the voltage across the capacitor. We first need to calculate 𝑉 ,
which is the transformed PWM signal. The PWM can be parameterized by two parameters:
The period 𝑇 and the duration of maximum value 𝜏 , as illustrated in Figure 2.
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Figure 2: A square wave.

Note that Figure 2 is nothing but a periodic placement of the following function:

𝑓0(𝑡) = {𝑣0 for 0 < 𝑡 < 𝜏 ,
0 elsewhere.

(7)

The square wave can be written as

𝑣(𝑡) =
∞

∑
𝑛=−∞

𝑓0(𝑡 − 𝑛𝑇 ). (8)

We can now transform it as follows:

𝑉 = ℒ [𝑣(𝑡)] = ∫
∞

0
𝑑𝑡 [𝑒−𝑠 𝑡

∞
∑
𝑛=0

𝑓0(𝑡 − 𝑛𝑇 )] =
∞

∑
𝑛=0

𝑒−𝑠 𝑛𝑇 ∫
∞

−𝑛𝑇
𝑑𝑡′ [𝑒−𝑠 𝑡′𝑓0(𝑡′)]

=
∞

∑
𝑛=0

𝑒−𝑠 𝑛𝑇 ∫
𝜏

0
𝑑𝑡′𝑒−𝑠 𝑡′𝑓0(𝑡′) = 𝑣0

∞
∑
𝑛=0

𝑒−𝑠 𝑛𝑇 1 − 𝑒−𝑠𝜏

𝑠 , (9)

where the range for 𝑓0 integration is truncated to 0−𝜏 since 𝑓0 vanishes elsewhere. If we really
wanted, we could evaluate the sum ∑∞

𝑛=0 𝑒−𝑠 𝑛𝑇 = 1
1−𝑒−𝑠𝑇 , and if 𝜏 = 𝑇 /2, this would result

in a compact expression for 𝑉 :

𝑉 ∣
𝜏=𝑇 /2

= 𝑣0
𝑠

1 − 𝑒−𝑠𝑇 /2

1 − 𝑒−𝑠𝑇 = 𝑣0
𝑠

1 − 𝑒−𝑠𝑇 /2

(1 − 𝑒−𝑠𝑇 /2)(1 + 𝑒−𝑠𝑇 /2) = 𝑣0
𝑠

1
1 + 𝑒−𝑠𝑇 /2 . (10)

However, since we want to look at a generic PWM case, we’d better keep the sum as is. In fact,
it will be more useful when we inverse Laplace transform. We can extract one more nugget of
information from Eq. 9 by looking at the limit:

lim
𝑠→0

𝑠𝑉 (𝑠) = = lim
𝑠→0

𝑠𝑣0
∞

∑
𝑛=0

𝑒−𝑠 𝑛𝑇 1 − 𝑒−𝑠𝜏

𝑠 = 𝑣0 lim
𝑠→0

1 − 𝑒−𝑠𝜏

1 − 𝑒−𝑠𝑇 ≃ 𝑣0
𝜏
𝑇 , (11)

3



which is the average value (duty cycle) of the wave.

Inserting the expression from Eq. 9 into Eq. 6 and solvig for 𝑉𝑐, we get

𝑉 = 𝑣0
𝑠(𝑅𝐶 𝑠 + 1)

∞
∑
𝑛=0

𝑒−𝑠 𝑛𝑇 (1 − 𝑒−𝑠𝜏) + 𝑅𝐶𝑣𝑐(0)
𝑅𝐶 𝑠 + 1

= 𝑣0 [1
𝑠 − 1

𝑠 + 1
𝑅𝐶

]
∞

∑
𝑛=0

[𝑒−𝑠 𝑛𝑇 − 𝑒−𝑠(𝑛𝑇 +𝜏)] + 𝑣𝑐(0) 1
𝑠 + 1

𝑅𝐶
. (12)

In order to inverse transform 𝑉𝑐, we will make use of the following property:

ℒ−1 [𝑒−𝛼𝑠𝐹(𝑠)] = 𝑢(𝑡 − 𝛼)𝑓(𝑡 − 𝛼), (13)

where 𝑢(𝑡) is the unit step function. Furthermore, we know ℒ−1 [1
𝑠 ] = 𝑢(𝑡) and ℒ−1 [ 1

𝑠+ 1
𝑅𝐶

] =
𝑢(𝑡)𝑒− 𝑡

𝑅𝐶 . Using these identities, we get:

𝑣𝑐(𝑡) = ℒ−1 [𝑉𝑐] =
∞

∑
𝑛=0

[𝑢(𝑡 − 𝑛𝑇 )(1 − 𝑒− 𝑡−𝑛𝑇
𝑅𝐶 ) − 𝑢(𝑡 − 𝑛𝑇 − 𝜏)(1 − 𝑒− 𝑡−𝑛𝑇−𝜏

𝑅𝐶 )]+𝑣𝑐(0)𝑢(𝑡)𝑒− 𝑡
𝑅𝐶 .

(14)
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