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In this blog post, we explore an alternative method for finding the eigenvectors
of the operator 𝑛̂ ⋅ 𝜎⃗, where 𝜎⃗ represents the Pauli matrices and 𝑛̂ is a unit vector.
Rather than using conventional eigenvalue methods, we demonstrate how to obtain
the eigenvectors through a series of rotations in spin space. This approach not
only yields the correct results but also provides deeper insights into why the Pauli
matrices transform as vector quantities under rotations.
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The straightforward way to find the eigenvectors of 𝑛̂ ⋅ 𝜎⃗ would be to use the usual method for
finding eigenvalues and then the eigenvectors. Let us try to solve the problem using another
method. We have 𝑛̂ = sin 𝜃 cos 𝜙 ̂𝑥 + sin 𝜃 sin 𝜙 ̂𝑦 + cos 𝜃 ̂𝑧. Assume we start with 𝑛̂ pointing

along ̂𝑧, so the state is | ̂𝑧𝑢𝑝⟩ = ( 1
0 ) which is an eigenvector of the ⃗𝑆 ⋅ 𝑛̂ operator with

eigenvalue 1. Let us rotate the state | ̂𝑧𝑢𝑝⟩ around ̂𝑦 by angle 𝜃 which can be done by acting
with the operator;

𝑒−𝑖𝜎𝑦𝜃/2 = ( cos( 𝜃
2) − sin( 𝜃

2)
sin( 𝜃

2) cos( 𝜃
2) ) . (1)

You can check that above equation is correct by Taylor expanding the 𝑒−𝑖𝜎𝑦𝜃/2, or you can
visualize the effect as rotating a vector around ̂𝑦 by angle 𝜃 keeping in mind that this is not
really a vector (spin-1 particle), but it is a spinor (spin 1/2), which is reflected by the fact
that we have 𝜃

2 instead of 𝜃. Next task is to rotate again, around the ̂𝑧 by angle 𝜙 which can
be done by acting with the operator;

𝑒−𝑖𝜎𝑧𝜙/2 = ( 𝑒−𝑖 𝜙
2 0

0 𝑒𝑖 𝜙
2

) . (2)
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The composite operator becomes

𝑒−𝑖𝜎𝑧𝜙/2𝑒−𝑖𝜎𝑦𝜃/2 = ( 𝑒−𝑖 𝜙
2 0

0 𝑒𝑖 𝜙
2

) ( cos( 𝜃
2) − sin( 𝜃

2)
sin( 𝜃

2) cos( 𝜃
2) )

= ( 𝑒−𝑖 𝜙
2 cos( 𝜃

2) −𝑒−𝑖 𝜙
2 sin( 𝜃

2)
𝑒𝑖 𝜙

2 sin( 𝜃
2) 𝑒𝑖 𝜙

2 cos( 𝜃
2) ) . (3)

The eigenvectors can be recovered as

|𝑛̂+⟩ = 𝑒−𝑖𝜎𝑧𝜙/2𝑒−𝑖𝜎𝑦𝜃/2| ̂𝑧𝑢𝑝⟩ = ( 𝑒−𝑖 𝜙
2 cos( 𝜃

2)
𝑒𝑖 𝜙

2 sin( 𝜃
2) ) ,

|𝑛̂−⟩ = 𝑒−𝑖𝜎𝑧𝜙/2𝑒−𝑖𝜎𝑦𝜃/2| ̂𝑧𝑑𝑜𝑤𝑛⟩ = ( −𝑒−𝑖 𝜙
2 sin( 𝜃

2)
𝑒𝑖 𝜙

2 cos( 𝜃
2) ) . (4)

In order to find ⟨𝑛̂ ± | ⃗𝑆|𝑛̂±⟩ we can use the above method to express |𝑛̂±⟩ in terms of | ̂𝑧𝑢,𝑑⟩.

⟨𝑛̂ ± | ⃗𝑆|𝑛̂±⟩ = ⟨ ̂𝑧𝑢,𝑑|𝑒𝑖𝜎𝑦𝜃/2𝑒𝑖𝜎𝑧𝜙/2 ⃗𝑆𝑒−𝑖𝜎𝑧𝜙/2𝑒−𝑖𝜎𝑦𝜃/2| ̂𝑧𝑢,𝑑⟩. (5)

To simplify the relation, we will compute the object 𝑒𝑖𝜎𝑗𝛼/2𝜎𝑘𝑒−𝑖𝜎𝑗𝛼/2 where we will assume
𝑘 ≠ 𝑗 (if 𝑘 = 𝑗, we can move 𝜎𝑘 through the exponentials to get 𝜎𝑘). Consider 𝑘 ≠ 𝑗 case:

𝑒𝑖𝜎𝑗𝛼/2𝜎𝑘𝑒−𝑖𝜎𝑗𝛼/2 = (𝐼 cos(𝛼
2 ) + 𝑖𝜎𝑗 sin(𝛼

2 )) 𝜎𝑘 (𝐼 cos(𝛼
2 ) − 𝑖𝜎𝑘 sin(𝛼

2 ))
= cos 𝛼𝜎𝑘 − sin 𝛼𝜖𝑗𝑘𝑚𝜎𝑚 = (cos 𝛼𝛿𝑘𝑚 + sin 𝛼𝜖𝑘𝑗𝑚) 𝜎𝑚

≡ 𝑅(𝑗)
𝑘𝑚(𝛼)𝜎𝑚. (6)

This equation is nothing but the rotation equation for the vector 𝜎⃗ around the 𝑗-axis. This
tells us that 𝜎⃗ indeed transforms like a vector, this is why it has a vector arrow on top! Now
the problem becomes easier,

⟨𝑛̂ ± |𝑆𝑘|𝑛̂±⟩ = ⟨ ̂𝑧𝑢,𝑑|𝑒𝑖𝜎𝑦𝜃/2𝑒𝑖𝜎𝑧𝜙/2𝑆𝑘𝑒−𝑖𝜎𝑧𝜙/2𝑒−𝑖𝜎𝑦𝜃/2| ̂𝑧𝑢,𝑑⟩
= ⟨ ̂𝑧𝑢,𝑑|𝑒𝑖𝜎𝑦𝜃/2𝑅(𝑧)

𝑘𝑚(𝜙)𝑆𝑚𝑒−𝑖𝜎𝑦𝜃/2| ̂𝑧𝑢,𝑑⟩
= 𝑅(𝑧)

𝑘𝑚(𝜙)𝑅(𝑦)
𝑚𝑛(𝜃)⟨ ̂𝑧𝑢,𝑑|𝑆𝑛| ̂𝑧𝑢,𝑑⟩

= ±1
2𝑅(𝑧)

𝑘𝑚(𝜙)𝑅(𝑦)
𝑚3(𝜃). (7)

We need to keep in mind that 𝑅(𝑗)
𝑘𝑚(𝛼) = 𝛿𝑘𝑚 for 𝑗 = 𝑘. Componentwise we get

⟨𝑛̂ ± |𝑆3|𝑛̂±⟩ = ±1
2𝑅(𝑧)

3𝑚(𝜙)𝑅(𝑦)
𝑚3(𝜃) = ±1

2𝛿3𝑚𝑅(𝑦)
𝑚3(𝜃) = ±1

2𝑅(𝑦)
33 = ±1

2 cos 𝜃,

⟨𝑛̂ ± |𝑆2|𝑛̂±⟩ = ±1
2𝑅(𝑧)

2𝑚(𝜙)𝑅(𝑦)
𝑚3(𝜃) = ±1

2 sin 𝜃 sin 𝜙,

⟨𝑛̂ ± |𝑆1|𝑛̂±⟩ = ±1
2𝑅(𝑧)

1𝑚(𝜙)𝑅(𝑦)
𝑚3(𝜃) = ±1

2 sin 𝜃 cos 𝜙. (8)
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And these results can be combined into ⟨𝑛̂ ± | ⃗𝑆|𝑛̂±⟩ = ±1
2 𝑛̂ As one can argue, this is not the

fastest method to solve the problem, however it provides insights to 𝜎- matrices and shows
why they deserve the arrow on top. This comes from the fact that structure constants (𝜖𝑖𝑗𝑘)
in the fundamental representation of 𝑆𝑈(2) group (the group of 2 × 2 matrices generated by
𝜎-matrices), become the generators of the adjoint representation, i.e., the usual vector space.
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