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In this blog post, we explore quantum scattering in one-dimensional systems,
focusing on the case of a rectangular potential barrier. We start by examining the
Schrödinger equation in one dimension and then move towards a more efficient so-
lution for the scattering problem. Rather than following the conventional approach
of solving from left to right and imposing continuity conditions at the boundaries,
we introduce a faster method by assigning coefficients directly from the transmit-
ted wave and building in the boundary conditions. We cover both scenarios where
the particle’s energy is below and above the potential barrier, and we detail how
to calculate the transmission and reflection coefficients in each case. To simplify
the calculations, we introduce dimensionless parameters, which allow us to rewrite
the transmission coefficient in a more intuitive form. This also helps us identify
resonance wavelengths, which occur when integer multiples of half-wavelengths fit
within the potential barrier.
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Introduction

Let us consider the Schrodinger equation with a simple one dimensional potential. For com-
pleteness will start with the time dependent equation which we will convert to time independent
one.

𝑖ℏ𝜕𝜓(𝑥, 𝑡)
𝜕𝑡 = 𝐻𝜓(𝑥, 𝑡), (1)

where the Hamiltonian 𝐻 is defined as

𝐻 = − ℏ2

2𝑚
𝜕2

𝜕𝑥2 + 𝑉 (𝑥). (2)
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𝑉 (𝑥) in Eq. 2 represents the potential. We will be solving for energy eigen-states which satisfy
the following equation:

𝐻𝜓(𝑥, 𝑡) = 𝐸 𝜓(𝑥, 𝑡). (3)

Plugging the expression in Eq. 3 into Eq. 1, we get:

𝑖ℏ𝜕𝜓(𝑥, 𝑡)
𝜕𝑡 = 𝐸 𝜓(𝑥, 𝑡), (4)

We can convert this partial differential equation into ordinary differential equation by sepera-
tion of variables: 𝜓(𝑥, 𝑡) ≡ 𝜓(𝑥)𝜙(𝑡).
Inserting this into Eq. 4, we get:

𝑖ℏ𝑑𝜙(𝑡)
𝑑𝑡 = 𝐸 𝜙(𝑥, 𝑡), (5)

where the time independent part drops from the equation. The solution to Eq. 5 is given by

𝜙(𝑡) = 𝜙(0)𝑒−𝑖𝐸𝑡, (6)

where 𝜙(0) represents the initial value. Therefore 𝜓(𝑥, 𝑡) is of the following form:

𝜓(𝑥, 𝑡) = 𝐴𝜓(𝑥)𝜙(0)𝑒−𝑖𝐸𝑡. (7)

Plugging the expression in Eq. 7 into Eq. 1, with the Hamiltonian given in Eq. 2, we get:

[− ℏ2

2𝑚
𝑑2

𝑑𝑥2 + 𝑉 (𝑥)] 𝜓(𝑥) = 𝐸 𝜓(𝑥), (8)

where the time dependent part, 𝜙(𝑡), drops from the equation. Eq. 8 is the differential equation
we will have to solve for various potentials 𝑉 (𝑥).

Free-particle solutions

Consider a particle of mass 𝑚 and momentum 𝑝 propagating freely along 𝑥− axis. Since there
is no potential involved, we have 𝑉 (𝑥) = 0. Therefore, the Schrodinger equation simplifies
to

2



[− ℏ2

2𝑚
𝑑2

𝑑𝑥2 ] 𝜓(𝑥) = 𝐸 𝜓(𝑥). (9)

The solutions to this equation are plane-waves:

𝜓(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥, (10)

where 𝑘 = √2𝑚𝐸
ℏ is the wave number. Figure 1 illustrates 𝑒𝑖𝑘𝑥 in terms of its real and

imaginary components.

Wave propagating along x-axis: eik x
Re(ψ)

I m(ψ)

Figure 1: A wave freely propagating along 𝑥−axis. The transverse axes show real and imagi-
nary parts of the wave.

The full solution reads

𝜓(𝑥, 𝑡) = 𝐴𝑒𝑖𝑘𝑥−𝑖𝐸𝑡 + 𝐵𝑒−𝑖𝑘𝑥−𝑖𝐸𝑡, (11)

where 𝑘 = √2𝑚𝐸
ℏ .

Scattering from a rectangular potential

Here we will present a super-fast way of solving the scattering problem by building in the
boundary conditions to the wave function. This will help significantly in solving for the
unknown coefficients. Consider the rectangular potential in Figure 2.
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Figure 2: A potential of height 𝑉 extending from 0 to 𝐿.

𝜓𝑖𝑛, 𝜓𝑟 and 𝜓𝑡 represent the incoming, reflected and transmitted wave-functions, respectively.
They are plane-waves, i.e., their functional form is 𝑒±𝑖𝑘𝑥. The functional form of the wave
for 0 < 𝑥 < 𝐿 depends on the energy of the incoming wave (𝐸) relative to the height of the
potential(𝑉 ). If 𝐸 < 𝑉 , the wave function will be of the form 𝑒±𝑘′𝑥, or equivalently cosh 𝑘′𝑥
and sinh 𝑘′𝑥 where 𝑘′ = √2𝑚(𝑉 − 𝐸)/ℏ. Although the functional forms look different, they
can be translated into each other by the transformation 𝑘′ → 𝑖𝑘′. We will first assume 𝐸 < 𝑉 ,
and use cosh 𝑘′𝑥 and sinh 𝑘′𝑥 in the middle region.

How not to solve the problem

The textbook method of solution has the following strategy: You start with generic coefficients
for the functions in three regions:

𝜓 =
⎧{
⎨{⎩

𝜓𝐿 = 𝜓𝑖𝑛 + 𝜓𝑟 = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥, 𝑥 < 0
𝜓𝑀 = 𝐶 cosh 𝑘′𝑥 + 𝐷 sinh 𝑘′𝑥, 0 < 𝑥 < 𝐿
𝜓𝑅 = 𝜓𝑡 = 𝐸𝑒𝑖𝑘𝑥, 𝑥 > 𝐿.

(12)

You then require the continuity of 𝜓 and 𝜓′ at 𝑥 = 0 and 𝑥 = 𝐿. That results in a matrix
equation that can be solved for 𝐵, 𝐶, 𝐷 and 𝐸. It will be a tedious calculation which we can
totally avoid with some out of box thinking.

A faster solution

There is no reason for solving the problem from left to right. We can think backwards, and
assign coefficients starting from the transmitted wave. We can also be a bit smarter and try to
satisfy the boundary conditions while we are assigning the coefficient. Let’s define 𝜓𝑅 first:

𝜓𝑅 = 𝐶𝑒𝑖𝑘(𝑥−𝐿), (13)

where we introduced an extra phase 𝑒−𝑖𝑘𝐿 for 𝜓𝑅 for two good reasons:
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1. We will be imposing the boundary condition at 𝑥 = 𝐿 with will cancel out the phase.
This will simplify the subsequent calculations.

2. The phase naturally arises as the wave travels a distance of 𝐿 even when 𝑉 = 0. This
means the phase in 𝐶 will be purely due to the potential barrier.

Let’s think about 𝜓𝑀 which will involve 𝑐𝑜𝑠ℎ𝑘′𝑥 and sinh 𝑘′𝑥. We will be imposing the
continuity at 𝑥 = 𝐿. Wouldn’t it be wonderful if one of the functions dropped at the boundary?
We can make that happen if we shift the arguments and use cosh 𝑘′(𝑥 − 𝐿) and sinh 𝑘′(𝑥 − 𝐿).
So let’s do the following:

𝜓𝑀 = 𝐶 cosh 𝑘′(𝑥 − 𝐿) + 𝐶 𝑖𝑘
𝑘′ sinh 𝑘′(𝑥 − 𝐿), (14)

which satisfies the continuity of the wave-function and its derivative at 𝑥 = 𝐿 by construction!
Now we need to construct 𝜓𝐿:

𝜓𝐿 = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥. (15)

We will require 𝜓𝐿(0) = 𝜓𝑀(0) and 𝑑
𝑑𝑥𝜓𝐿(0) = 𝑑

𝑑𝑥𝜓𝑀(0), which results in

𝐴 + 𝐵 = 𝐶(cosh 𝑘′𝐿 − 𝑖𝑘
𝑘′ sinh 𝑘′𝐿)

𝐴 − 𝐵 = 𝐶(−𝑘′

𝑖𝑘 sinh 𝑘′𝐿 + cosh 𝑘′𝐿) (16)

Solving for 𝐶 and 𝐵 is very easy:

𝐶 = 1
cosh 𝑘′𝐿 − 𝑖𝑘2−𝑘′2

2𝑘𝑘′ sinh 𝑘′𝐿
𝐴 (17)

𝐵 = −𝑖𝑘′2 + 𝑘2

2𝑘𝑘′ sinh 𝑘′𝐿 𝐶 = −𝑖𝑘′2+𝑘2
2𝑘𝑘′ sinh 𝑘′𝐿

cosh 𝑘′𝐿 − 𝑖𝑘2−𝑘′2
2𝑘𝑘′ sinh 𝑘′𝐿

𝐴, (18)

where 𝑘′ = √2𝑚(𝑉 − 𝐸)/ℏ and 𝑘 =
√

2𝑚𝐸/ℏ. The transmission and reflection strength can
be defined as 𝐶/𝐴 and 𝐵/𝐴

𝑡 ≡ 𝐶
𝐴 = 1

cosh 𝑘′𝐿 − 𝑖𝑘2−𝑘′2
2𝑘𝑘′ sinh 𝑘′𝐿

= 1
√1 + 𝑉 2

4𝐸(𝑉 −𝐸) sinh2 𝑘′𝐿
𝑒𝑖𝜃𝑡 (19)

𝑟 ≡ 𝐵
𝐴 =

−𝑖 𝑉
2√𝐸(𝑉 −𝐸) sinh 𝑘′𝐿

cosh 𝑘′𝐿 − 𝑖𝑘2−𝑘′2
2𝑘𝑘′ sinh 𝑘′𝐿

=
𝑉

2√𝐸(𝑉 −𝐸) sinh 𝑘′𝐿

√1 + 𝑉 2
4𝐸(𝑉 −𝐸) sinh2 𝑘′𝐿

𝑒𝑖𝜃𝑟 , (20)
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where we simplified the denominator as follows:

Denum = ∣cosh 𝑘′𝐿 − 𝑖𝑘2 − 𝑘′2

2𝑘𝑘′ sinh 𝑘′𝐿∣ = √cosh2 𝑘′𝐿 + [𝑘2 − 𝑘′2

2𝑘𝑘′ ]
2

sinh2 𝑘′𝐿

= √1 + sinh2 𝑘′𝐿 + [𝑘2 − 𝑘′2

2𝑘𝑘′ ]
2

sinh2 𝑘′𝐿 =
√√√
⎷

1 + (1 + [𝑘2 − 𝑘′2

2𝑘𝑘′ ]
2
) sinh2 𝑘′𝐿

= √1 + [𝑘2 + 𝑘′2

2𝑘𝑘′ ]
2

sinh2 𝑘′𝐿 = √1 + 𝑉 2

4𝐸(𝑉 − 𝐸) sinh2 𝑘′𝐿 (21)

Note that the coefficients in Eq. 20 are complex numbers, and the phases are given by

𝜃𝑡 = arctan (𝑘2 − 𝑘′2

2𝑘𝑘′ tanh 𝑘′𝐿) = arctan ( 2𝐸 − 𝑉
√𝐸(𝑉 − 𝐸)

tanh [√2𝑚(𝑉 − 𝐸)
ℏ 𝐿])

𝜃𝑟 = −𝜋
2 + 𝜃𝑡. (22)

Let’s look at a low energy limit as a sanity check of our reflection angle. Assume a very high
potential i.e., 𝑉 ≫ 𝐸. In this case, the argument of arctan goes to −∞, which yields an angle
of −𝜋/2 of for the transmitted wave. Therefore, we conclude that the reflected wave will gain
an wave shift of −𝜋, which is equaivalent to 𝜋 since we can add multiples of 2𝜋. This is what
one would expect for classical reflection of a wave.

E>V case

When 𝐸 > 𝑉 , we will have a negative number in the square root and 𝑘′ will be a purely
imaginary number. Furthermore we can use the equality sinh(𝑖𝑥) = 𝑖 sin(𝑥) for 𝑥 ∈ ℝ. So we
can actually combine 𝐸 > 𝑉 and 𝐸 < 𝑉 cases into a single expression:

|𝑡|2 = 1

1 + 𝑉 2
4𝐸|𝐸−𝑉 | ∣sin [√2𝑚(𝐸−𝑉 )

ℏ 𝐿]∣
2 . (23)

In order to plot the coefficients, it is a good idea to define unitless quantities. One thing we
can do is to normalize energy 𝐸 with respect to the height of the potential 𝑉 and define a
unitless measure of the potential depth: So, let’s define ℰ = 𝐸/𝑉 and ℒ =

√
2𝑚𝑉
ℏ 𝐿. In these

units, the transmission coefficient can be rewritten as:

|𝑡|2 = 1
1 + 1

4ℰ|ℰ−1| ∣sin [
√

1 − ℰℒ]∣2
, (24)
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which is a good representation to see how things change as energy of the incoming wave and
the potential depth is varied. One important observation is that the transmission coefficient in
Eq. 23 will be equal to 1 when

√
1 − ℰℒ = 𝑛𝜋, where 𝑛 is an integer. These are the resonance

wavelengths where integer number of half-wavelengths can fit in the potential barrier.

Exploring the reflections and transmissions

Figure 3: Scattering amplitudes and phases. Find the interactive plot here.
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