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This article presents the theoretical foundations of Nuclear Magnetic Resonance
(NMR) quantum computers, one of the earliest experimental implementations of
quantum computation. We derive the complete Hamiltonian for spin-1/2 nuclei
in magnetic fields and demonstrate how radiofrequency pulses can implement arbi-
trary single-qubit rotations through the rotating wave approximation. The analysis
extends to two-qubit systems, showing how spin-spin coupling enables the imple-
mentation of controlled-NOT gates and other essential quantum operations. These
theoretical developments establish NMR as a viable platform for quantum compu-
tation, capable of executing any quantum algorithm through a combination of
single-qubit rotations and two-qubit interactions.

blog: https://tetraquark.vercel.app/posts/quantum_nrm/?src=pdf

email: quarktetra@gmail.com

Introduction

Alanine is one of the simplest amino acids, consisting of a central carbon atom bonded to an
amino group, a carboxyl group, a hydrogen atom, and a methyl group side chain. This molec-
ular simplicity makes alanine an ideal candidate for NMR quantum computing experiments,
as its nuclear spins can be easily manipulated and measured. The methyl group provides ad-
ditional qubit states through its three equivalent hydrogen nuclei, while the central carbon-13
nucleus offers another quantum degree of freedom. ?@fig-alanine3d shows the 3D structure
of alanine used in NMR quantum computing experiments.
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Figure 1: Interactive 3D structure of alanine (C�H�NO�) showing the molecular geometry used
in NMR quantum computing experiments. Alanine is the simplest chiral amino
acid, containing a central carbon atom bonded to an amino group, a carboxyl group,
a hydrogen atom, and a methyl group. This molecular structure makes alanine
particularly suitable for NMR quantum computing applications, as its nuclear spins
can be precisely controlled and measured. The structure displays both stick and
sphere representations with proper 3D coordinates from DrugBank (DB01786).

2



A spin 1/2 nucleus or an electron placed in a magnetic field of strength 𝐵 can be described by
the Hamiltonian

𝐻 = −ℏ𝑤0
2 𝜎𝑧, (1)

where 𝜎𝑧 is the 3𝑟𝑑 Pauli matrix and 𝑤0 = 𝜇𝐵, 𝜇 being the magnetic dipole moment of the
particle. In this representation the eigenstates can be written explicitly as

| ↓⟩ = ( 0
1 ) , | ↑⟩ = ( 1

0 ) . (2)

Let us now introduce a magnetic field in the 𝑥 direction,

⃗𝐵1 = −𝐵1 cos(𝜔𝑟𝑓𝑡 − 𝜙) ̂𝑥. (3)

The full Hamiltonian becomes

𝐻 = −ℏ𝑤0
2 𝜎𝑧 + 2ℏ𝑤1 cos(𝜔𝑟𝑓𝑡 − 𝜙)𝜎𝑥, (4)

where 𝑤1 = 𝛾𝐵1/2. Here we assume that 𝑤0 ≪ 𝑤1. The Schrödinger Equation reads

𝑖 𝜕
𝜕𝑡 |𝜓(𝑡)⟩ = 𝐻(𝑡)|𝜓(𝑡)⟩. (5)

Since the Hamiltonian is time dependent, it is convenient to describe the problem in a rotating
frame such that the Hamiltonian in that frame becomes time independent. Let us define

|𝜓(𝑡)⟩ = 𝑈𝑅(𝑡)|𝜓𝑅(𝑡)⟩, (6)

where
𝑈𝑅(𝑡) = 𝑒−𝑖 𝑤

2 𝑡𝜎𝑧 . (7)
Inserting Eq. 6 into Eq. 5 yields

𝑖 𝜕
𝜕𝑡 |𝜓𝑅(𝑡)⟩ = (𝑈𝑅𝐻(𝑡)𝑈†

𝑅 − 𝑖ℏ𝑈𝑅
𝑑
𝑑𝑡𝑈†

𝑅) |𝜓𝑅(𝑡)⟩, (8)

which shows that the Hamiltonian in the rotating frame is

𝐻̃ = 𝑈𝑅𝐻𝑈†
𝑅 − 𝑖ℏ𝑈𝑅

𝑑
𝑑𝑡𝑈†

𝑅, (9)

and we also used 𝑑
𝑑𝑡𝑈𝑅𝑈†

𝑅 = −𝑈𝑅
𝑑
𝑑𝑡𝑈†

𝑅. (10)

We can calculate Eq. 9 explicitly as

𝐻̃ = 𝑈𝑅𝐻𝑈†
𝑅 − 𝑖ℏ𝑈𝑅

𝑑
𝑑𝑡𝑈†

𝑅

= −(𝑤 − 𝑤1)𝜎𝑧/2
+ 𝑤1 cos(𝑤𝑟𝑓𝑡 − 𝜙)𝑒−𝑖𝑤𝑡𝜎𝑧𝑡/2𝜎𝑥𝑒𝑖𝑤𝑡𝜎𝑧𝑡/2. (11)
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We can use the following property of the Pauli matrices

𝑒−𝑖𝑤𝑡𝜎𝑧𝑡/2𝜎𝑥𝑒𝑖𝑤𝑡𝜎𝑧𝑡/2 = 𝜎𝑥 cos(𝑤𝑡) + 𝜎𝑦 sin(𝑤𝑡). (12)

Inserting this into Eq. 11 we get,

𝐻̃ = ( −𝑤−𝑤1
2 𝑤1𝑒−𝑖𝑤𝑡 cos(𝑤𝑟𝑓𝑡 − 𝜙)

𝑤1𝑒𝑖𝑤𝑡 cos(𝑤𝑟𝑓𝑡 − 𝜙) 𝑤−𝑤1
2

)

= 𝑤1
2 ( −𝑤−𝑤1

𝑤1
𝑒−𝑖(Δ𝑡+𝜙)𝑒−𝑖(Σ𝑡−𝜙)

𝑒𝑖(Δ𝑡+𝜙) + 𝑒𝑖(Σ𝑡−𝜙) 𝑤−𝑤1
𝑤1

) (13)

where we define Σ = 𝑤+𝑤𝑟𝑓 and Δ = 𝑤−𝑤𝑟𝑓 . It is important to note that 𝑤𝑟𝑓 is the frequency
of the magnetic field, therefore we can choose it such that 𝑤𝑟𝑓 = 𝑤0. In this case Σ = 2𝑤𝑟𝑓
and Δ = 0. Furthermore the terms with Σ are rapidly oscillating and their average becomes
zero over the time scale 1/𝑤1, which is the time scale for rotations. This approximation is
called the rotating wave approximation. In this limit 𝐻̃ becomes time independent, and
reads

𝐻̃ = ℏ𝜔1
2 (cos 𝜙𝜎𝑥 + sin 𝜙𝜎𝑦) = ℏ𝜔1 ( 0 𝑒−𝑖𝜙

𝑒𝑖𝜙 0 ) (14)

This completes the simplification of the Hamiltonian. We now discuss how this Hamiltonian
can implement single qubit operations.

Single qubit operations

It is obvious that Hamiltonian in Eq. 14 can easily generate rotations around 𝑥 and 𝑦-axis. If
one chooses 𝜙 = 0 or 𝜙 = 𝜋, the time development operator reads

𝑈(𝑡) = 𝑒−𝑖𝐻̃𝑡/ℏ = 𝑒∓𝑖 𝑤1𝑡
2 𝜎𝑥 , (15)

which clearly generates rotations around ±𝑥-axis. Similarly if one chooses 𝜙 = ±𝜋/2, the time
development operator reads

𝑈(𝑡) = 𝑒−𝑖𝐻̃𝑡/ℏ = 𝑒∓𝑖 𝑤1𝑡
2 𝜎𝑦 , (16)

which generates rotations around ±𝑦-axis. Although Eq. 14 lacks 𝜎𝑧, the rotations around
𝑧-axis can be generated as a series of rotations around 𝑥 and 𝑦 axes. This follows from the
identity

𝑒−𝑖𝛼𝜎𝑧/2 = 𝑒−𝑖 𝜋
2 𝜎𝑥/2𝑒−𝑖𝛼𝜎𝑦/2𝑒−𝑖 𝜋

2 𝜎𝑥/2. (17)

Therefore we conclude that the nuclear spin can be rotated to any point in the Bloch Sphere.
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Two-qubit operations

Now we need to describe two qubits using the Hamiltonian of individual qubits and their
interactions. Let split the Hamiltonian into three pieces:

𝐻 = 𝐻0 + 𝐻𝑟𝑓,1 + 𝐻𝑟𝑓,2. (18)

The first term is the time independent part that includes interaction of the qubits with the
external magnetic field along 𝑧-axis and the inter-qubit interaction:

𝐻0 = −𝑤0,1𝐼𝑧 ⊗ 𝐼 − 𝑤0,2𝐼 ⊗ 𝐼𝑧 + 𝐽 ∑
𝑘

𝐼𝑘 ⊗ 𝐼𝑘, (19)

where the last term is the interaction of the magnetic dipoles of the qubits. The second and
the third terms in Eq. 18 are the interactions of the qubits with the time varying control field
along the 𝑥-axis,

𝐻𝑟𝑓,1 = 2ℏ𝑤1,1 cos(𝜔𝑟𝑓,1𝑡 − 𝜙1)(𝐼𝑥 ⊗ 𝐼 + 𝑔𝐼 ⊗ 𝐼𝑥), (20)

and
𝐻𝑟𝑓,2 = 2ℏ𝑤1,2 cos(𝜔𝑟𝑓,2𝑡 − 𝜙2)(𝑔−1𝐼𝑥 ⊗ 𝐼 + 𝐼 ⊗ 𝐼𝑥), (21)

where
2𝑤1,𝑖 = 𝛾𝑖𝐵1,𝑖 𝑎𝑛𝑑 𝑔 = 𝛾2/𝛾1. (22)

We will employ the same trick of transforming into the rotating frame using the following
operator:

𝑈𝑅(𝑡) = 𝑒−𝑖𝑤0,1𝐼𝑧𝑡 ⊗ 𝑒−𝑖𝑤0,2𝐼𝑧𝑡 (23)

In this frame, the transformed Hamiltonian reads

𝐻̃ = 𝐽𝐼𝑧 ⊗ 𝐼𝑧 + ℏ𝑤1,1[cos 𝜙1𝐼𝑥 ⊗ 𝐼 + sin 𝜙1𝐼𝑦 ⊗ 𝐼]
+ ℏ𝑤1,2[cos 𝜙2𝐼 ⊗ 𝐼𝑥 + sin 𝜙2𝐼 ⊗ 𝐼𝑦], (24)

which is basically the final form of the Hamiltonian. Keep in mind that 𝑤1,𝑖 is tied to the
external field along the 𝑥-axis, which we can turn on and off. When that control field is turned
off, the dynamics of the qubits is simply driven by the interaction term1; therefore, the time
evolution operator corresponding to the Hamiltonian in Eq. 24 simplifies to:

𝑈𝑅(𝑡) = 𝑒−𝑖𝐽𝐼𝑧⊗𝐼𝑧𝑡 =
⎛⎜⎜⎜⎜⎜
⎝

𝑒−𝑖 𝐽𝑡
4 0 0 0

0 𝑒𝑖 𝐽𝑡
4 0 0

0 0 𝑒𝑖 𝐽𝑡
4 0

0 0 0 𝑒−𝑖 𝐽𝑡
4

⎞⎟⎟⎟⎟⎟
⎠

(25)

1Keep in mind that we are in the rotating frame and the effect of the external field along 𝑧-axis is taken care
of.
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Before we proceed, let’s take a look at the values of these frequencies for a couple of molecules:

molecule 𝑤0,1 𝑤0,2 𝐽
Chloroform 500 Mhz 100 Mhz 200 Hz

Cytosine 500 Mhz 500 Mhz 7.1 Hz

Note how small are the frequencies corresponding to the qubit interaction term 𝐽 . This implies
that the time evolution operator in Eq. 25 is very slow. For Cytosine it will take 1/7.1 seconds
to complete a full period!

If we let the system evolve for a period of time 𝜏 = 𝜋/𝐽 , we get

𝑈𝑅( 𝜋
𝐽 ) = 𝑒−𝑖𝜋𝐼𝑧⊗𝐼𝑧 =

⎛⎜⎜⎜⎜
⎝

𝑒−𝑖 𝜋
4 0 0 0

0 𝑒𝑖 𝜋
4 0 0

0 0 𝑒𝑖 𝜋
4 0

0 0 0 𝑒−𝑖 𝜋
4

⎞⎟⎟⎟⎟
⎠

, (26)

which is a particularly useful transformation matrix. Let’s do a very special series of transfor-
mations as follows:

𝑍1 ̄𝑍2𝑋2𝑈𝑅( 𝜋
𝐽 )𝑌2 = 𝑒−𝑖 𝜋

4
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎟
⎠

. (27)

The operator in Eq. 27 is the Holy Grail of quantum operations: it is 𝑈𝐶𝑁𝑂𝑇 , which flips the
second qubit only if the first qubit is 1. It is necessary and sufficient to create all possible
2-qubit operations. This completes the derivation that the NMR computer can create any
possible single qubit or two-qubit operations. And it is rather straightforward to extend this
to multi-qubit case by simply generalizing Eq. 24 as follows:

𝐻̃ =
𝑛−1
∑
𝑖=1

𝐽𝑖,𝑖+1𝐼𝑧,𝑖 ⊗ 𝐼𝑧,𝑖+1 +
𝑛

∑
𝑖=1

ℏ𝑤1,𝑖[cos 𝜙𝑖𝐼𝑥 + sin 𝜙𝑖𝐼𝑦] (28)

which shows that it is possible to execute 𝑈𝐶𝑁𝑂𝑇 operations for any qubit pairs.

6


	Introduction
	Single qubit operations
	Two-qubit operations

