
Red balls, Green Balls

2024-08-29

This work delves into a probability puzzle involving an urn with an unknown
number of red and green balls. Initially, the number of red balls is randomly
selected. After observing a red ball on the first draw, the likelihood of drawing
another red ball is calculated using Bayesian probability, which adjusts the proba-
bility distribution over possible urn configurations. The puzzle is further explored
by modifying the setup, introducing a scenario where the number of red balls is
determined by repeated coin flips, resulting in a binomial distribution. Theoretical
results suggest a 2/3 probability of drawing a red ball again in the original setup,
and a 1/2 probability when using the binomial model. These outcomes are val-
idated through simulations, highlighting the nuanced effects of initial conditions
on probability outcomes and underscoring the importance of rigorous reasoning in
probabilistic analysis.

blog: https://tetraquark.vercel.app/posts/redballgreenball/

email: quarktetra@gmail.com

Introduction

Probability is a fascinating yet often perplexing field because it deals with uncertainty and
randomness, concepts that can be challenging to intuitively grasp. Many probability problems
appear simple on the surface but reveal surprising and counterintuitive results upon closer
inspection. For example, the Monty Hall problem, where switching doors in a game show
leads to better odds of winning, defies most people’s gut instincts. This highlights the impor-
tance of rigorous mathematical analysis in probability. Without careful calculation and logical
reasoning, our intuitive judgments can lead us astray, underscoring the need for a systematic
approach to understanding and applying probability in real-world situations. Today, we will
tackle such a problem.

1

https://tetraquark.vercel.app/posts/redballgreenball/
mailto:quarktetra@gmail.com

Problem Statement

Quoting from Quanta magazine, [1]

” Imagine, that you have an urn filled with 100 balls, some red and some green. You can’t see
inside; all you know is that someone determined the number of red balls by picking a number
between zero and 100 from a hat. You reach into the urn and pull out a ball. It’s red. If you
now pull out a second ball, is it more likely to be red or green (or are the two colors equally
likely)? “

— Daniel Litt

Let us define the number of balls in the urn as 𝑁 . Originally, there are 𝑁 +1 different possible
configurations for the urns with the number of red balls from 0 to 𝑁 . Let is label the urns as
𝑢𝑖, with 𝑖 ∈ {0, 1, 2, ⋯ , 𝑁}. Since the number of red balls is pulled from a uniform distribution,
the probability of getting any 𝑢𝑖 is simply 1

𝑁+1 .

First, we will shut-up and apply the rigorous machinery of probability theory. Second, we will
do a simulation to double check the results.

Shut up and calculate

Given the first ball is red, the probability that it came from urn 𝑢𝑖 (i.e., an urn with 𝑖 red
balls) is

𝑃(𝑢𝑖|𝑥1 = 𝑅) = 𝑃(𝑥1 = 𝑅|𝑢𝑖)𝑃 (𝑢𝑖)
𝑃 (𝑥1 = 𝑅) , (1)

which is the Bayesian formula. We can compute the denominator as

𝑃(𝑥1 = 𝑅) =
𝑁

∑
𝑖=0

𝑃(𝑥1 = 𝑅|𝑢𝑖)𝑃 (𝑢𝑖) =
𝑁

∑
𝑖=0

𝑖
𝑁

1
𝑁 + 1 = 1

2. (2)

And the numerator as

𝑃(𝑥1 = 𝑅|𝑢𝑖)𝑃 (𝑢𝑖) = 𝑖
𝑁

1
𝑁 + 1 = 𝑖

𝑁(𝑁 + 1). (3)

Putting Eqs. 2 and 3 back into Eq. 1 gives

𝑃(𝑢𝑖|𝑥1 = 𝑅) = 2𝑖
𝑁(𝑁 + 1). (4)

Note that this is very important. Originally, the probability of getting an urn with 𝑖 red
balls was flat at 1

𝑁+1 . However, the fact that first ball is red implies that it is more likely

2

that it came from an urn with more red balls, see Figure 1. Now that we have a probability
distribution for having 𝑢𝑖, we can compute the probability of getting a red ball in the second
draw:

𝑃 (𝑥2 = 𝑅) =
𝑁

∑
𝑖=0

𝑃(𝑥2 = 𝑅|𝑢𝑖)𝑃 (𝑢𝑖|𝑥1 = 𝑅) =
𝑁

∑
𝑖=0

𝑖 − 1
𝑁 − 1

2𝑖
𝑁(𝑁 + 1)

= 2
(𝑁 − 1)𝑁(𝑁 + 1)

𝑁
∑
𝑖=0

(𝑖2 − 𝑖)

= 2
(𝑁 − 1)𝑁(𝑁 + 1) [𝑁(𝑁 + 1)(2𝑁 + 1)

6 − 𝑁(𝑁 + 1)
2]

= 2𝑁 + 1
3(𝑁 − 1) − 1

𝑁 − 1 = 2
3. (5)

Therefore, getting a red ball is twice as likely as getting a green ball, independent of how many
balls there are in the urn.

A tweak

The statement “All you know is that someone determined the number of red balls by picking
a number between zero and 100 from a hat” is so critical. In order to show why that is, let’s
revise the preparation of the urn as follows: “The urn is prepared by adding balls to the urn
one by one by flipping a coin. If the coin is heads, you add a red ball, a green one otherwise.”
This will completely transform the question. The number of red balls in the urn will have the
binomial probability density:

𝑓𝑏(𝑖, 𝑁) = (𝑁
𝑖)𝑝𝑖(1 − 𝑝)𝑁−𝑖. (6)

Now, we just need to redo the math. Given the first ball is red, the probability that it came
from urn 𝑢𝑖 (i.e., an urn with 𝑖 red balls) is

𝑃(𝑢𝑖|𝑥1 = 𝑅) = 𝑃(𝑥1 = 𝑅|𝑢𝑖)𝑃 (𝑢𝑖)
𝑃 (𝑥1 = 𝑅) , (7)

which is still the Bayesian formula. We can compute the denominator as

𝑃(𝑥1 = 𝑅) =
𝑁

∑
𝑖=0

𝑃(𝑥1 = 𝑅|𝑢𝑖)𝑃 (𝑢𝑖) =
𝑁

∑
𝑖=0

𝑓𝑏(𝑖, 𝑁) 𝑖
𝑁 = 1

𝑁 ⟨𝑖⟩ = 𝑝. (8)

For a fair coin used in the preparation 𝑝 = 1/2. The numerator reads

𝑃(𝑥1 = 𝑅|𝑢𝑖)𝑃 (𝑢𝑖) = 𝑖
𝑁 𝑓𝑏(𝑖, 𝑁). (9)

3

Putting Eqs. 8 and 9 back into Eq. 7 gives

𝑃(𝑢𝑖|𝑥1 = 𝑅) = 1
𝑁𝑝𝑖𝑓𝑏(𝑖, 𝑁). (10)

Now that we have a probability distribution for having 𝑢𝑖, we can compute the probability of
getting a red ball in the second draw:

𝑃(𝑥2 = 𝑅) =
𝑁

∑
𝑖=0

𝑃(𝑥2 = 𝑅|𝑢𝑖)𝑃 (𝑢𝑖|𝑥1 = 𝑅)

= 1
𝑝𝑁(𝑁 − 1)

𝑁
∑
𝑖=0

(𝑖 − 1)𝑖𝑓𝑏(𝑖, 𝑁) = 1
𝑝𝑁(𝑁 − 1) (⟨𝑖2⟩ − ⟨𝑖⟩)

= 1
𝑝𝑁(𝑁 − 1) (⟨𝑖⟩2 + 𝜎2 − 𝑁𝑝) = 1

𝑝𝑁(𝑁 − 1) (𝑁2𝑝2 + 𝑁𝑝(1 − 𝑝) − 𝑁𝑝)

= 1
𝑝𝑁(𝑁 − 1)𝑁(𝑁 − 1)𝑝2

= 𝑝, (11)

which is the probability of the coin that was used to build the urn! Therefore, getting a red ball
in the second draw is as probable as getting a green one provided that the coin was unbiased.

Simulation

Here is a simulation code written in R. If you are interested in playing with the simulation,
you can copy it below.

A code to simulate the problem:
https://www.quantamagazine.org/perplexing-the-web-one-probability-puzzle-at-a-time-20240829/
Find the math at
#https://tetraquark.vercel.app/post/redballgreenball/redballgreenball/index.html?src=githubrepo
library(plotly)
colorize <- function(x) {

if (x < 0) {
"R"

} else {
"G"

}
} # will use this to map +1,-1 to colors
probBalls <- 0.5 # Set this as a global variable.

4

Nballs <- 100
Nsim <- 40000
set the number of balls in an urn, and the number of simulations
t2 <- list(size = 20)
wbinomProb <- function(x) {
x / Nballs * dbinom(x, size = Nballs, prob = probBalls)

} # will use this to map +1,-1 to colors
binomProb <- function(x) {
dbinom(x, size = Nballs, prob = probBalls)

} # will use this to map +1,-1 to colors

firstBall <- c()
secondBall <- c()
gBalls <- c()
rBalls <- c()
BallsOneTwo <- c() # initialize arrays to store various values

simulator <- function(drawMode) {
for (s in c(1:Nsim)) {

if (drawMode == "uniform") {
randomRedCount <- sample.int(Nballs, 1) # this is how the urn is set up: number of red balls is pulled from a unifor distribution
balls <- c(rep(-1, randomRedCount), rep(1, Nballs - randomRedCount)) # repeat -1 randomRedCount times to get reds, and +1 for greens

}
if (drawMode == "binomial") {
balls <- 2 * rbinom(Nballs, 1, probBalls) - 1

}
ballsC <- sapply(balls, colorize) # map numbers to colors
NumOfGreens <- round(Nballs / 2 + sum(balls) / 2) # compute the number of Green balls
gBalls <- c(gBalls, NumOfGreens) # log the value for the green balls in this urn
rBalls <- c(rBalls, Nballs - NumOfGreens) # log the value for the red balls in this urn

randomIndex <- sample.int(length(balls), 1) # draw a random index, this will select a ball from the urn
thisfirstBall <- ballsC[randomIndex] # color of the first ball
firstBall <- c(firstBall, thisfirstBall) # log the first ball color
ballsC <- ballsC[-randomIndex] # remove this ball from the urn.

randomIndex <- sample.int(length(ballsC), 1) # draw another random index for the second ball
thissecondBall <- ballsC[randomIndex] # color of the second ball
secondBall <- c(secondBall, thissecondBall) # log the second ball
BallsOneTwo <- c(BallsOneTwo, paste0(thisfirstBall, "_", thissecondBall)) # Create a pair for later use

}
dtBall <- data.frame("gBallsC" = gBalls, "rBallsC" = rBalls, "firstBall" = firstBall, "secondBall" = secondBall, "BallsOneTwo" = BallsOneTwo) # build a data frame

5

dtBallS <- dtBall[dtBall$firstBall == "R",] # we are told that the first ball is red, so, just keep these outcomes.
redRatio <- nrow(dtBallS[dtBallS$secondBall == "R",]) / nrow(dtBallS) # simply compute the ratio of counts of second ball color= R to the total count (with B1=R)
xv <- c(0:Nballs)
if (drawMode == "uniform") {

titleText <- "Uniform Preparation"

yv <- 100*2 * xv / (Nballs * (Nballs + 1))
rAVGtheory <- 100*2 / 3
yv0 <- 100*rep(1 / (1 + Nballs), length(xv))

} # theoretical formula; https://tetraquark.vercel.app/post/redballgreenball/redballgreenball/index.html#eq:bayesf?src=githubrepo2
if (drawMode == "binomial") {

titleText <- "Binomial Preparation"
yv <- sapply(xv, wbinomProb)
yv0 <- sapply(xv, binomProb)
yv0 <- 100*yv0 / sum(yv0)

yv <- 100*yv / sum(yv)
rAVGtheory <- probBalls

} # theoretical formula; https://tetraquark.vercel.app/post/redballgreenball/redballgreenball/index.html#eq:bayesf?src=githubrepo2

Pre-calculate histogram data
hist_data <- hist(dtBallS$rBalls, breaks = seq(-0.5, Nballs + 0.5, by = 1), plot = FALSE)
hist_counts <- 100 * hist_data$counts / sum(hist_data$counts) # Convert to percentages using total count
hist_mids <- hist_data$mids

m <- list(l = 70, r = 10, b = 70, t = 20, pad = 8)
figOut <- plot_ly(alpha = 0.5) %>%

add_bars(x = ~hist_mids,
y = ~hist_counts,
name = "Simulation",
marker = list(color = 'blue', opacity = 0.5)) %>%

add_trace(x = ~xv,
y = ~(yv),
name = "Revised",
type = "scatter",
mode = "markers+lines") %>%

layout(
hovermode = "x",
xaxis = list(
hoverformat = ".0f",
title = list(text = "Number of Red Balls")

),

6

yaxis = list(
hoverformat = ".2r",
title = list(text = "Probability Density (%)")

),
plot_bgcolor = "rgba(0, 0, 0, 0)",
paper_bgcolor = "rgba(0, 0, 0, 0)",
bargap = 0

) %>%
layout(title = list(y = 0.95, x = 0.2, text = paste0(titleText), font = t2)) %>%
layout(legend = list(x = 0.1, y = 0.85, orientation = "v", font = t2), margin = m) %>%
config(mathjax = "cdn") # Changed from TRUE to "cdn"

figOut%>%config(mathjax = "cdn"). # enable this to render MathJax
figOut <- figOut %>% add_trace(x = xv, y = yv0, name = "Original", type = "scatter", mode = "markers+lines")

output <- list(figOut, redRatio, rAVGtheory)
return(output)

}

if (FALSE) {
drawMode <- "uniform"
drawMode="binomial";
returns <- simulator(drawMode)
redRatioFormatted <- formatC(signif(returns[[2]], digits = 3), digits = 3, format = "fg", flag = "#")
redRatioThFormatted <- formatC(signif(returns[[3]], digits = 3), digits = 3, format = "fg", flag = "#")
print(paste0("Nballs:", Nballs, ";", drawMode, "-->probability of second ball being red is:", redRatioFormatted, ". Predicted value=", redRatioThFormatted, "."))
returns[[1]]

}

The code simulates the original problem with 100 balls and repeats it 40000 times.

Figure 1: Green: original density, Orange:The probability distribution of having an urn with
𝑖 red balls given that the first ball was red, Blue: simulation results.

We can now simply count the cases of second ball being red, and the simulation result is
0.673 ± 0.005 with 95% confidence level which is very close to the 66.7 value we predicted in
Eq. 5.

Below is the tweaked problem where the balls are decided with coin flip.

Figure 2: Green: original density, Orange:The probability distribution of having an urn with
𝑖 red balls inside that the first ball was red, Blue: simulation results.

7

We can now simply count the cases of second ball being red, and the simulation result is
0.501 ± 0.005 with 95% confidence level which is very close to the 0.5 value we predicted in Eq.
11. The color of the first ball isn’t really a useful information, it barely moves the distribution.
In fact, the shift towards the higher values of red ball count exactly cancels the fact that we
threw away a red ball in the first draw. It is a perfect cancellation!

[1] E. Klarreich, “Perplexing the web, one probability puzzle at a time,” Quanta Magazine,
2024 [Online]. Available: https://www.quantamagazine.org/perplexing-the-web-one-
probability-puzzle-at-a-time-20240829/

8

https://www.quantamagazine.org/perplexing-the-web-one-probability-puzzle-at-a-time-20240829/
https://www.quantamagazine.org/perplexing-the-web-one-probability-puzzle-at-a-time-20240829/

	Introduction
	Problem Statement
	Shut up and calculate
	A tweak
	Simulation

