
A refresher on statistical mechanics

2025-03-21

This article provides a comprehensive refresher on fundamental concepts in statis-
tical mechanics, drawing inspiration from Leonard Susskind’s lectures. Beginning
with probability theory and Shannon’s information-theoretic definition of entropy,
we establish the mathematical foundations that bridge information theory and
thermodynamics. We explore the derivation of entropy formulas using both Shan-
non’s axioms and combinatorial approaches with Stirling’s approximation. The
article presents the zeroth, first, and second laws of thermodynamics, with partic-
ular emphasis on the relationship between entropy, energy flow, and temperature
in interacting systems. Using calculus of variations and Lagrange multipliers, we
demonstrate how entropy maximization principles lead to the uniform and Boltz-
mann distributions. Throughout, we supplement theoretical discussions with vi-
sual representations and detailed derivations to provide intuitive understanding of
these abstract concepts. This refresher serves as an accessible entry point for read-
ers seeking to revisit or develop a deeper understanding of statistical mechanics
and its connections to information theory.

blog: https://tetraquark.vercel.app/posts/refresher_statmech/

email: quarktetra@gmail.com

Throughout my education, I took two classes on thermodynamics: one undergraduate level
and one grad level. I disliked it very much in both cases. I hated the second one so much
mostly because of the professor teaching the class. It was a complete torture for me. It has
been quite a while since then, and my bad memories faded away along with most of what
I managed to learn in these two horrible classes. I needed a refresher, and I found that on
Youtube in Susskind’s lectures.

I want to clearly state that all the credit goes to Prof. Susskind, and I am just reproducing
portions of it for my entertainment. I occasionally deviate from his notation for selfish reasons.
I also include extra calculations, derivations, and plots to unpack some of the details skipped
in his lectures.

1

https://tetraquark.vercel.app/posts/refresher_statmech/
mailto:quarktetra@gmail.com
https://www.youtube.com/watch?v=D1RzvXDXyqA&list=PL_IkS0viawhr3HcKH607rXbVqy28W_gB7

If anybody wants to read through my notes, I suggest you do it in parallel with the videos
since I am not including most of the verbal discussion and some introductory material in the
lectures.

This is a work in progress, and I will keep updating the post.

Probability and entropy

Consider a random variable 𝑋 with possible outcomes 𝑥. We will want to keep things simple
first and consider the case of discrete case, for which there are finite number of outcoumes that
we can labels as {𝑥1, 𝑥2, ⋯ , 𝑥𝑁} where 𝑁 is the number of possible outcomes. For example,
if we are flipping a coin 𝑁 = 1 and {𝑥1, 𝑥2} = {heads, tails}; if we are rolling a die, 𝑁 = 6
and {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} = {1, 2, 3, 4, 5, 6}. We can also assign a probability to observe the
outcome 𝑥𝑖 as follows:

𝑝𝑖 ≡ 𝑃(𝑋 = 𝑥𝑖), (1)

with the unit normalization
𝑁

∑
𝑖=1

𝑝𝑖 ≡ 1. (2)

The entropy associated with random variable is a measure of uncertainty in the outcome. Let
us consider a uniform distribution as shown in Figure 1.

1
M

i

M
Pi

Figure 1: A probablity distribution with 𝑁 states, 𝑀 of which are possible with probability
1

𝑀 .

For such a distribution, all the outcomes are equally likely and there are 𝑁 of them. The
entropy of such a distribution is defined as the logarithm of the number of possible outcomes,
that is:

𝑆 = 𝑙𝑜𝑔(𝑀). (3)

2

For a generic distribution, we have to modify this definition. It will be modified as follows:

𝑆 = − ∑
𝑖

𝑝𝑖 log(𝑝𝑖). (4)

We can quickly see that Eq. 4 reduces back to Eq. 3 when 𝑝𝑖 = 1
𝑀 :

𝑆 = − ∑
𝑖

𝑝𝑖 log(𝑝𝑖) = − ∑
𝑖

1
𝑀 log (1

𝑀) = −𝑀 1
𝑀 log (1

𝑀) = 𝑙𝑜𝑔(𝑀). (5)

In order to get to the bottom of this definition in Eq. 4, we have a couple of options, as
discussed below.

Defining the entropy

This derivation comes from the father of the information theory, Claude Shannon in his ground
breaking paper[1]. We define an information function, 𝐻, which takes in the probability
distribution, i.e., 𝐻 = 𝐻(𝑝1, 𝑝2, ⋯ , 𝑝𝑁). Shannon requires the following features in 𝐻 :

1. 𝐻 should be continuous in the 𝑝𝑖.
2. If all 𝑝𝑖 are equal, 𝑝𝑖 = 1/𝑁 , then 𝐻 should be a monotonically increasing function of

𝑛. With equally likely events there is more choice, or uncertainty, when there are more
possible events.

3. The total information extracted from two events must be the sum of the information
collected from each: 𝐻(𝑝 × 𝑞) = 𝐻(𝑝) + 𝐻(𝑞).

You can clearly see that the third requirement is begging for a 𝑙𝑜𝑔 function, i.e. 𝐻(𝑝) = −𝑙𝑜𝑔(𝑝).
Shannon shows that it is the only function that meets all of the requirements. Note that the
negative sign in front of Eq. 4 makes sure the second requirement is satisfied. For multiple 𝑝𝑖,
we simply sum over 𝑝𝑖’s.

There is another way of getting the same answer by combinatorics. Let us assume that we
have

Another way of getting the same result is by using the Stirling’s approximation for factorial.
Consider a stream of 𝑛 bits consisting of 0’s and 1’s. If the probability of a bit being 1 is 𝑝,
for large 𝑛, the average number of 1’a in such messages will be 𝑛𝑝, and the average number
of 0’s will be 𝑛(1 − 𝑝). We can easily estimate the number of different messages that can me
constructed with these many 0’s and 1’s as (𝑛

𝑛𝑝) , and compute its log:

𝑙𝑜𝑔(𝑛
𝑛𝑝) = 𝑛!

𝑛𝑝! 𝑛(1 − 𝑝)! ≃ 𝑛𝑙𝑜𝑔(𝑛) − 𝑛 − 𝑛𝑝 𝑙𝑜𝑔(𝑛𝑝) + 𝑛𝑝 − 𝑛(1 − 𝑝) 𝑙𝑜𝑔 (𝑛(1 − 𝑝)) + 𝑛(1 − 𝑝)

= −𝑛 [𝑝 𝑙𝑜𝑔(𝑝) + (1 − 𝑝) 𝑙𝑜𝑔(1 − 𝑝)] , (6)

where we used the Stirling approximation 𝑙𝑜𝑔(𝑛!) = 𝑛 𝑙𝑜𝑔(𝑛) − 𝑛 + 𝒪(𝑙𝑜𝑔(𝑛)).

3

Notes on Stirling’s formula

Consider the following integral:

∫
∞

0
𝑑𝑥𝑥𝑛𝑒−𝑥 = [(−1)𝑛 𝑑𝑛

𝑑𝛼𝑛 ∫
∞

0
𝑑𝑥𝑒−𝛼𝑥]

𝛼=1
= [(−1)𝑛 𝑑𝑛

𝑑𝛼𝑛
1
𝛼]

𝛼=1
= 𝑛!. (7)

From this definition, we can do the following:

𝑛! = ∫
∞

0
𝑑𝑥𝑥𝑛𝑒−𝑥 = ∫

∞

0
𝑑𝑥𝑒𝑛𝑙𝑛(𝑥)−𝑥. (8)

Let’s take a close look at the function in the exponent:

𝑢(𝑥) = 𝑛𝑙𝑛(𝑥) − 𝑥, (9)

as shown in Fig. @ref(fig:fplot). This function has its peak value at 𝑥 = 𝑛. Note that
this function appears in the exponent, under the integral. The dominant contribution
to the integral will come from the domain around 𝑥 = 𝑛. we can expand 𝑢(𝑥) around
𝑥 = 𝑛:

𝑢(𝑥) = 𝑛𝑙𝑛(𝑥) − 𝑥 = 𝑛𝑙𝑛(𝑥 − 𝑛 + 𝑛) − 𝑥 = 𝑛𝑙𝑛(𝑛[1 + 𝑥 − 𝑛
𝑛]) − 𝑥

≃ 𝑛 (𝑙𝑛(𝑛) + 𝑥 − 𝑛
𝑛 − 1

2 [𝑥 − 𝑛
𝑛]

2
) − 𝑥 = 𝑛𝑙𝑛(𝑛) − 𝑛 − 1

2
(𝑥 − 𝑛)2

𝑛 ≡ 𝑢̃(𝑥).(10)

The original function and the approximated functions are plotted in ?@fig-fplot.
𝑛
From ?@fig-fplot, we also notice that if we extended the 𝑥 range to include negative
values, the integral would not change much since 𝑒 1

2
(𝑥−𝑛)2

𝑛 is rapidly decaying. Therefore
we can change the lower limit of the integral from 0 to −∞ to get:

𝑛! = ∫
∞

0
𝑑𝑥𝑥𝑛𝑒−𝑥 = ∫

∞

0
𝑑𝑥𝑒𝑢(𝑥) ≃ ∫

∞

0
𝑑𝑥𝑒𝑢̃(𝑥) = 𝑛𝑛𝑒−𝑛 ∫

∞

0
𝑑𝑥𝑒− 1

2
(𝑥−𝑛)2

𝑛

≃ 𝑛𝑛𝑒−𝑛 ∫
∞

−∞
𝑑𝑥𝑒− 1

2
(𝑥−𝑛)2

𝑛 = 𝑛𝑛𝑒−𝑛√
2𝜋𝑛 =

√
2𝜋𝑛 (𝑛

𝑒)
𝑛

. (11)

?@fig-factplot shows the comparison of 𝑛! with the Stirling’s approximation given in
Eq. 11.

Equation 4 has a summation since we assumed discrete distribution specified by index 𝑖. The

4

continuous version of it is straight forward to write:

𝑆 = − ∫ 𝑑𝑥𝑝(𝑥) log (𝑝(𝑥)) , (12)

where the integral is evaluated over the space 𝑝(𝑥) is defined. What kind of distribution would
maximize the entropy? One can anticipate that it has to be the uniform distribution defined
in a specific range. And we can easily prove that using calculus of variations with Lagrange
multipliers. The Lagrange multiplier comes in to satisfy the normalization of the probability
density, similar to Eq. 2

∫ 𝑑𝑥𝑝(𝑥) = 1. (13)

In optimization problems with constraints, one tries to find the extrema of a function while
satisfying the contraints imposed. Consider a function, 𝑓(𝑥, 𝑦), and assume we want to find
the location (𝑥0, 𝑦0) for which 𝑓(𝑥0, 𝑦0) assumes its maximum, and at the same time we want
a constrain function to be satisfied: 𝑔(𝑥0, 𝑦0) = 0. One can solve this problem using brute
force:

• Require �𝑓(𝑥, 𝑦)|(𝑥0,𝑦0) = 0 and 𝑔(𝑥0, 𝑦0) = 0.
• Solve these two equations with two unknowns.

Although it is technically possible to solve it this way, it may require us to invert complicated
functions which might be hard to do. It gets even harder as we introduce more variables and
constraints. We can do better than that!

Let us consider a contour curve of 𝑓 , which is the pairs of numbers (𝑥, 𝑦) for which 𝑓(𝑥, 𝑦) = 𝑘.
We want 𝑘 to be as large as possible while satisfying 𝑔(𝑥0, 𝑦0) = 0. To illustrate the method,
let us take the following functions:

𝑓(𝑥, 𝑦) = 𝑦2 − 𝑥2, 𝑔(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 1, (14)

which are shown in ?@fig-lagplot.

𝑘
If there was no constraint, we would increase the value of 𝑘 indefinitely. However, we are
required to find a solution (𝑥0, 𝑦0) that satisfies 𝑔(𝑥0, 𝑦0) = 0, which means two curves have
to pass through the point (𝑥0, 𝑦0). As you tune the value of 𝑘, you realize that you can make
the curves to intersect at different points. The optimal solution is the one at which two curves
touch each other, and, for this particular example, we can graphically see that it happens at
𝑘 = 1 and (𝑥0, 𝑦0) = (0, 1).
How do we solve this analytically though? Note that in this critical point, two curves are
barely touching each other. More precisely, they are tangent to each other at that point, i.e.,

5

they have the same value and the same slope. Since the tangents are the same, the vector
which is perpendicular to the tangents must be the same too. And that perpendicular vector
is nothing but the gradient. Note that we are limiting ourselves to a two-dimensional problem
for pedagogical reasons. The observation above holds for any dimension. Let’s prove that
gradient vector is indeed perpendicular to the curve. In a generic case, 𝑓 can be a function of
multiple variables: 𝑓 = 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) where x = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) is an 𝑛 dimensional vector.
The level surface of this function is composed of x values such that 𝑓(x0) = 𝑘, which defines
an 𝑛 − 1 dimensional level surface. What we want to prove is that for any point on the level
surface, 𝑓(x0) = 𝑘, the gradient of 𝑓 , i.e., �𝑓|x0

is perpendicular to the surface.

Let us take an arbitrary curve on this surface, x(𝑡), parameterized by a parameter 𝑡, and
assume it passes through x0 at 𝑡 = 𝑡0. On the surface 𝑓(x(𝑡)) = 𝑓 (𝑥1(𝑡), 𝑥2(𝑡), ⋯ , 𝑥𝑛(𝑡)) = 𝑘.
Let’s take the parametric derivative of 𝑓 and apply the chain rule.

𝑑𝑓
𝑑𝑡 = 0 =

𝑛
∑
𝑖=1

𝜕𝑓
𝜕𝑥𝑖

∣
x0

𝑑𝑥𝑖
𝑑𝑡 ∣

𝑡0

= �𝑓|x0
⋅ ẋ|𝑡0

, (15)

where we defined ẋ|𝑡0
= 𝑑x(𝑡)

𝑑𝑡 ∣
𝑡0

, which is nothing but the tangent line. Therefore we conclude
that the gradient is perpendicular to the tangent lines on the surface.

This exercise tells us that the gradients of the function we want to optimize is parallel to the
gradient of the constraint function. That is:

�𝑓|x0
= 𝜆 �𝑔|x0

, (16)

where the constant 𝜆 is the Lagrange multiplier. And keep in mind that we also need to satisfy
𝑔(x0) = 0 We can neatly combine these to requirements by defining a new function:

ℎ(x, 𝜆) = 𝑓(x) − 𝜆𝑔(x), (17)

which can be optimized by requiring

�ℎ|x0
= 0, and 𝜕ℎ

𝜕𝜆∣
x0

= 0. (18)

The bottom line is that the constraint itself is mixed into the function that we want to optimize.
The expression in 18 has equal number of equations and unknowns, so we can solve for x0 and
𝜆.

6

You may also want to see this post for examples. Combining the condition with the target
function to maximize, Eq. 12, we have the following integral to maximize:

𝐼 = − ∫ 𝑑𝑥𝑝(𝑥) log (𝑝(𝑥)) − 𝜆 (∫ 𝑑𝑥𝑝(𝑥) − 1) = − ∫ 𝑑𝑥𝑝(𝑥) (log (𝑝(𝑥)) + 𝜆) + 𝜆 (19)

Now move the function 𝑝(𝑥) to 𝑝(𝑥)+𝛿(𝑥), and require that 𝛿𝐼 = 0 for the 𝑝(𝑥) that maximizes
𝐼 . This yields:

𝛿𝐼 = − ∫ 𝑑𝑥𝛿𝑝(𝑥) [log (𝑝(𝑥)) + 1 + 𝜆] = 0. (20)

Since 𝛿𝑝(𝑥) is totally arbitrary, we need log (𝑝(𝑥)) + 1 + 𝜆 = 0. Furthermore, as 𝜆 is just
a constant, this shows that 𝑝(𝑥) is also a constant. Let’s assume that we are interested in
distributions defined in the range [𝑎, 𝑏]. The normalization condition in Eq. 13 uniquely
defines the value of the constant as 1

𝑏−𝑎 .

The laws of thermodynamics

So far we have been talking about probability distributions in the most abstract form. They
can be anything: coin flip, bits in a message to be transmitted etc. Let’s now switch to physical
cases. In such cases, the probability distributions will be parameterized by a physical quantity,
such as the average energy 𝐸.

𝑆(𝐸) = − ∑
𝑖

𝑝𝑖 log (𝑝𝑖) , (21)

where we are using the discrete index 𝑖 and the sum. The average value of energy, 𝐸 is the
statistical average:

𝐸 = ∑
𝑖

𝑝𝑖𝐸𝑖, (22)

where 𝐸𝑖 is the energy values of the state 𝑖, and the probability of that state to be occupied
is 𝑝𝑖. It is emphasize again that 𝐸 is the average energy of the system, and it would have
been more appropriate to denote it as ̄𝐸 or ⟨𝐸⟩, however, that would look very ugly in the
equations. We will keep it as 𝐸 and promise to remember that it is the mean value of the
energy, not the energy of each level or particle. This might look recursive, but it will make
more sense as we proceed.

In order to pack this law, we need to define the temperature and the energy flow. In order to
do that, consider two systems which are held at temperatures 𝑇𝐵 and 𝑇𝐴 with 𝑇𝐵 > 𝑇𝐴.

7

https://tetraquark.netlify.app/post/lagrange_multiplier/

TB TA

TB > TA

Figure 2: Two containers at temperatures 𝑇𝐵 and 𝑇𝐴 with 𝑇𝐵 > 𝑇𝐴 are connected to exchange
heat.

Let us state the first and second law:

• 1st law of thermodynamics: Energy is conserved.
• 2st law of thermodynamics: Entropy always increases.

The total entropy of the system is given by the sum of the entropies of the subsystems:

𝑆 = 𝑆𝐴 + 𝑆𝐵. (23)

The first law implies that changes in energies add up to zero:

𝑑𝐸𝐴 + 𝑑𝐸𝐵 = 0. (24)

The second law requires:

𝑑𝑆 = 𝑑𝑆𝐴 + 𝑑𝑆𝐵 > 0 (25)

The temperature of a system is defined in terms of the entropy function 𝑆(𝐸) as follows:

𝑇 ≡ 𝑑𝐸
𝑑𝑆 . (26)

Inserting the definition from Eq. 26 into Eq. 24 we get:

𝑑𝐸𝐴 + 𝑑𝐸𝐵 = 0 = 𝑇𝐴𝑑𝑆𝐴 + 𝑇𝐵𝑑𝑆𝐵 ⟹ 𝑑𝑆𝐵 = −𝑇𝐴
𝑇𝐵

𝑑𝑆𝐴. (27)

8

Putting this in the second law in Eq. 25, we get

The second law requires:

𝑑𝑆 = 𝑑𝑆𝐴 + 𝑑𝑆𝐵 = (1 − 𝑇𝐴
𝑇𝐵

) 𝑑𝑆𝐴 = 𝑇𝐵(𝑇𝐵 − 𝑇𝐴)𝑑𝑆𝐴 > 0. (28)

Since 𝑇𝐵 > 0 and 𝑇𝐵 > 𝑇𝐴, we conclude that 𝑑𝑆𝐴 > 0, that is entropy increases. Also note
that 𝑇𝐴𝑑𝑆𝐴 = 𝑑𝐸𝐴 > 0, therefore the energy is flowing to container 𝐴 from 𝐵. As 𝑇𝐵 equalizes
with 𝑇𝐴, the heat flow will stop and two containers will be in equilibrium. Therefore it is the
temperature that determines the direction of the energy. One can extend the analysis above
to a third container to state the 0th law od thermodynamics:

• 0th law of thermodynamics: If two systems are both in thermal equilibrium with
a third system, then they are in thermal equilibrium with each other.

Occupation number

Consider a system with 𝑚 states. An occupation number is the number of systems, 𝑛, oc-
cupying a given 𝑖th state, and we will denote this number as 𝑛𝑖. Given 𝑚 such states, i.e.,
𝑖 ∈ {1, 2, ⋯ , 𝑚}, we are interested in finding the total number of possible ways to redistribute
the systems among the states. This is illustrated in Figure 3.

n1 n2 · · · ni · · · nm

Figure 3: 𝑚 boxes with given occupation numbers 𝑛𝑖.

We assume that the total number of occupation number is fixed, we will define it as 𝑁 :

𝑁 ≡
𝑚

∑
𝑖=1

𝑛𝑖. (29)

For a randomly selected system, the probability of that system to be in state 𝑖 is the ratio of
the number of states in the 𝑖th and the total number of states:

𝑝𝑖 = 𝑛𝑖
𝑁 , (30)

9

which results in a normalized probability distribution:
𝑚

∑
𝑖=1

𝑝𝑖 = 1. (31)

We also need to make sure that total energy is conserved:
𝑚

∑
𝑖=1

𝐸𝑖𝑛𝑖 = 𝑁
𝑚

∑
𝑖=1

𝐸𝑖
𝑛𝑖
𝑁 = 𝑁

𝑚
∑
𝑖=1

𝐸𝑖𝑝𝑖 = 𝑁𝐸, (32)

where 𝐸 is the average energy. While keeping the occupation numbers fixed, we can shuffle
systems around to create different configurations. For 𝑁 systems, we get 𝑁! shufflings. How-
ever, we should remove the overcounting within the states with 𝑛𝑖 as the occupation number.
Therefore the total number of combination to create such as system is:

𝐶 = 𝑁!
∏𝑚

𝑖=1 𝑛𝑖!
. (33)

We can now take the log of 𝐶 and use the Stirling approximation: 𝑛! =
√

2𝜋𝑛 (𝑛
𝑒)𝑛:

𝑙𝑜𝑔(𝐶) = 𝑙𝑜𝑔(𝑁!) −
𝑚

∑
𝑖=1

𝑙𝑜𝑔(𝑛𝑖!) = 𝑁𝑙𝑜𝑔(𝑁) − 𝑁 −
𝑚

∑
𝑖=1

𝑛𝑖𝑙𝑜𝑔(𝑛𝑖) +
𝑚

∑
𝑖=1

𝑛𝑖 + 𝒪(1)

= −𝑁
𝑚

∑
𝑖=1

𝑛𝑖
𝑁 𝑙𝑜𝑔 (𝑛𝑖

𝑁) = −𝑁
𝑚

∑
𝑖=1

𝑝𝑖𝑙𝑜𝑔(𝑝𝑖). (34)

We have shown earlier that this expression is maximized when 𝑝𝑖 are equally likely, which was
the case for the Shannon entropy. However, it is very different for this case since we have an
additional constraint now, as described in Eqs. 29 and 31. We will multiply these constraints
with Lagrange multipliers which we will call 𝛼 and 𝛽, and subtract them from the original
function in Eq. 34. Therefore the combined function becomes:

ℎ(𝑝𝑖, 𝛼, 𝛽) = −𝑁
𝑚

∑
𝑖=1

𝑝𝑖𝑙𝑜𝑔(𝑝𝑖) − 𝛼 (
𝑚

∑
𝑖=1

𝑛𝑖 − 𝑁) − 𝛽 (𝑁
𝑚

∑
𝑖=1

𝐸𝑖𝑝𝑖 − 𝑁𝐸)

= −𝑁 {
𝑚

∑
𝑖=1

𝑝𝑖𝑙𝑜𝑔(𝑝𝑖) − 𝛼 (
𝑚

∑
𝑖=1

𝑝𝑖 − 1) − 𝛽 (
𝑚

∑
𝑖=1

𝐸𝑖𝑝𝑖 − 𝐸)} (35)

Note that overall factors, such as the factor 𝑁 in Eq. 35, do not affect the optimization. Now
we just do the math:

𝜕
𝜕𝑝𝑗

ℎ(𝑝, 𝛼, 𝛽) = 0 = −𝑙𝑜𝑔(𝑝𝑗) − 1 − 𝛼 − 𝛽𝐸𝑗 (36)

which implies

𝑝𝑗 = 𝑒−(1+𝛼+𝛽𝐸𝑗) = 𝑒−(1+𝛼)𝑒−𝛽𝐸𝑗 ≡ 𝑒−𝛽𝐸𝑗

𝒵 , (37)

10

where

𝒵 ≡ 𝑒1+𝛼. (38)

𝒵 is referred to as the partition function, and one can think of it as the normalization factor.
We can see that by imposing the normalization condition in Eq. 31:

𝑚
∑
𝑖=1

𝑝𝑖 = 1 =
𝑚

∑
𝑖=1

𝑒−𝛽𝐸𝑖

𝒵 , (39)

which results in:

𝒵 =
𝑚

∑
𝑖=1

𝑒−𝛽𝐸𝑖 . (40)

We can figure out the relation between 𝒵 and 𝐸 by imposing the conservation of energy
constraints in Eq. 32:

𝐸 =
𝑚

∑
𝑖=1

𝐸𝑖𝑝𝑖 =
𝑚

∑
𝑖=1

𝐸𝑖
𝑒−𝛽𝐸𝑖

𝒵 = 1
𝒵

𝑚
∑
𝑖=1

𝐸𝑖𝑒−𝛽𝐸𝑖 = 1
𝒵 (− 𝜕

𝜕𝛽) [
𝑚

∑
𝑖=1

𝑒−𝛽𝐸𝑖]

= − 1
𝒵

𝜕𝒵
𝜕𝛽 = −𝜕𝑙𝑜𝑔𝒵

𝜕𝛽 . (41)

We can now compute the entropy:

𝑆 = −𝑁
𝑚

∑
𝑖=1

𝑝𝑖𝑙𝑜𝑔(𝑝𝑖) = −𝑁
𝑚

∑
𝑖=1

[𝑒−𝛽𝐸𝑖

𝒵 𝑙𝑜𝑔 (𝑒−𝛽𝐸𝑖

𝒵)]

= 𝛽𝐸 + 𝑙𝑜𝑔(𝒵). (42)

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical
Journal, vol. 27, pp. 379–423, 1948 [Online]. Available: %22https://ieeexplore.ieee.org/
document/6773024%22. [Accessed: 22-Apr-2003]

11

%22https://ieeexplore.ieee.org/document/6773024%22
%22https://ieeexplore.ieee.org/document/6773024%22

	Probability and entropy
	Defining the entropy

	The laws of thermodynamics
	Occupation number

