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We consider anisotropies in the stochastic background of gravitational-waves (SBGW) arising
from random fluctuations in the number of gravitational-wave sources. We first develop the general
formalism which can be applied to different cosmological or astrophysical scenarios. We then apply
this formalism to calculate the anisotropies of SBGW associated with the fluctuations in the number
of cosmic string loops, considering both cosmic string cusps and kinks. We calculate the anisotropies
as a function of angle and frequency.
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A stochastic background of gravitational-wave
(SBGW) radiation is produced by a large number of
weak, independent and unresolved gravitational wave
sources. The sources of the SBGW can be isotropic
or anisotropic. For the case of sources of cosmological
origin [1–3] the distribution of the gravitational wave
sources is expected to be isotropic, while astrophysical
sources such as rotating neutron stars [4] or magnetars
[5] may have an anisotropic distribution. Even in the
case of an a priori isotropic source distribution, random
fluctuations in the number of sources will (in general)
give rise to anisotropies. Such anisotropies are analogous
to the anisotropies observed in the cosmic microwave
background (CMB) radiation and would carry additional
information about the gravitational-wave sources that
generated them.
Cosmic strings are expected to contribute to the SBGW.
Cosmic strings are predicted by a large class of unified
theories [6–8] as remnants of spontaneously broken
symmetries at phase transitions in the early Universe,
as well as in string-theory-inspired cosmological scenar-
ios [9]. Once formed, a network of cosmic strings evolves
toward an attractor solution called the scaling regime,
in which the statistical properties of the network, such
as the average distance between strings and the size of
loops at formation, scale with the cosmic time. The
gravitational interaction of strings is characterized by
the dimensionless parameter Gµ, where G is Newton’s
constant and µ is the tension. The current CMB bound
on the tension is Gµ < 6.1 × 10−7 [10, 11]. Cosmic
string cusps, regions of string that acquire enormous
Lorentz boosts, are expected to generate large transient
gravitational-wave signals [12–14]. Such individual
bursts could be observable by current and planned
gravitational wave detectors [15] for values of Gµ as low
as 10−13, which may provide a probe of a certain class of
string theories [9]. A SBGW produced by the incoherent
superposition of cusp bursts from a network of cosmic
strings and superstrings was considered in [16, 17], and
it was later shown that kinks contribute to the SBGW

at the same order as cusps [18]. These sources of SBGW
are also observable by current and planned detectors,
for a wide range of the parameter space, see [17, 18] and
references therein.
In this paper, we develop a general formalism to treat
SBGW anisotropies. In particular, we consider two-point
correlations in SBGW between two different directions
in the sky, which arise from random fluctuations in
the number of gravitational-wave sources. While this
formalism is applicable to a variety of cosmological and
astrophysical SBGW models (see [19] and the references
therein), we illustrate it for the specific case of cosmic
(super)string cusps and kinks.
Anisotropies in the SBGW: We start from formalism
in references [13, 14] and extend it to treat angular
dependence. The energy density of SBGW at frequency
f corresponding to sources in the direction Ω̂ is given by

Ωgw(f, Ω̂) ≡
f

ρc

dρgw(Ω̂)

df
, (1)

where dρgw is the energy density of gravitational waves
in the frequency range f to f + df and ρc is the criti-
cal energy density of the Universe. Let us assume that
sources are characterized by a set of parameters ζ - in the
case of cosmic strings, redshift z is one such parameter.
Therefore Ωgw is an integral over the parameter space ζ,
which we propose to discretize as follows:

Ωgw(f, Ω̂) =

∫

dζn(ζ, Ω̂)w(f, ζ, Ω̂)

≃
∑

i

∆(ζi)n(ζi, Ω̂)w(f, ζi, Ω̂)

≡
∑

i

N(ζi, Ω̂)w(f, ζi, Ω̂). (2)

Here we assume that the parameter space can be divided
into disjoint volumes ∆(ζi), centered at ζi, whose size
is large compared to the correlation length of the num-
ber of sources. In other words, a statistical fluctuation
in the number of sources in one volume would have no
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implications on the number of sources in any other vol-
ume. We further define n(ζi, Ω̂) as the number density of
sources (i.e number per parameter space volume) in the
direction Ω̂ with the parameter set ζi, and w(f, ζi, Ω̂) as
the contribution to Ωgw of one source at frequency f ,

in the direction Ω̂, and with the parameter set ζi. We
also define N(ζi, Ω̂) ≡ n(ζi, Ω̂)∆(ζi) as the total number
of sources with the parameters in the range from ζi to
ζi + ∆(ζi) and in the direction Ω̂. The contribution of
one source is given by

w(f, ζi, Ω̂) ≡
4π2f3

3H2
0

h2(f, ζi, Ω̂)R(f, ζi, Ω̂), (3)

where h(f, ζi, Ω̂) is the strain of the gravitational wave
with frequency f originating from a source with param-
eters ζi and at the line of sight Ω̂. R(f, ζi, Ω̂) represents
the observable part of the gravitational radiation from
the source, i.e. it incorporates the propagation of the
wave in the expanding universe as well as possible beam-
ing effects, see [12, 13].
The angular dependence of N can originate from

anisotropic source distribution. Moreover, even in the
case of an a priori isotropic SBGW, random fluctuations
in the number of sources will (in general) give rise to
anisotropies. Note that N(ζi, Ω̂) are dimensionless num-
bers, which are by construction uncorrelated for differ-
ent values of the index i. Assuming Poisson distribu-
tion, the statistical fluctuations of N(ζi, Ω̂) are of order
√

N(ζi, Ω̂). The corresponding fluctuation in Ωgw is

δΩgw(f, Ω̂) =
∑

i

δN(ζi, Ω̂)w(f, ζi, Ω̂), (4)

The two-point correlation of δΩgw(f, Ω̂) at two different
directions reads

C ≡
〈

δΩgw(f, Ω̂)δΩgw(f, Ω̂
′)
〉

(5)

=
∑

i, j

w(f, ζi, Ω̂)w(f, ζj , Ω̂
′)
〈

δN(ζi, Ω̂)δN(ζj , Ω̂
′)
〉

.

Since the fluctuations in the number of gravitational-
wave sources are Poissonian, we propose the following
bilinear expectation:

〈

δN(ζi, Ω̂)δN(ζj , Ω̂
′)
〉

∼ N(ζi, Ω̂)F(γ, ζi) δij , (6)

where γ is the angle between Ω̂ and Ω̂′. F is a function
that incorporates the correlation properties of the grav-
itational wave sources. Although the precise form of F
will depend on the problem at hand, we can discuss sev-
eral properties of this function. Firstly, we expect to see
the maximum correlation if the two sources are close to
each other in the physical space as well as the parameter
space. Therefore F must assume its maximum value at

γ = 0, and it should decrease for larger values of γ. Since
F constrains γ, the angle between Ω̂ and Ω̂′, to small
values, we keep only Ω̂ at the right hand side of Eq. (6).
This is a good approximation as long asN changes slowly
with Ω̂. Below we will consider an explicit example and
discuss form of F in more detail. Inserting this into Eq.
(5) gives

C =
∑

i

∆(ζi)n(ζi, Ω̂)w
2(f, ζi, Ω̂)F(γ, ζi)

→
∫

dζn(ζ, Ω̂)w2(f, ζ, Ω̂)F(γ, ζ), (7)

where we take the integral limit of the sum. This is
a general expression applicable to both cosmological
and astrophysical problems in which the correlation
properties of the sources are specified by the function F .

Cosmic Strings Case: We now apply this formalism to
the case of cosmic strings, including gravitational-wave
bursts from cusps and kinks, in which the distribution of
sources is specified by the redshift z. It is convenient to
parameterize physical quantities in terms of redshift. To
this end, we define the following dimensionless cosmolog-
ical functions:

ϕr(z) =

∫ z

0

dz′

H(z′)
,

ϕt(z) =

∫ ∞

z

dz′

(1 + z′)H(z′)
,

ϕV (z) =
ϕ2
r(z)

(1 + z)3H(z)
, (8)

where H(z) =
√

Ωm(1 + z)3 +Ωr(1 + z)4 +ΩΛ is the
Hubble function with ΩM = 0.25, ΩR = 4.6 × 10−5 and
ΩΛ = 1 − ΩM − ΩR. We now explicitly construct the
integral in Eq. (7). Firstly, the parameter space volume
dζ in this case is simply the co-moving volume. It can be
written as H−3

0 ϕV (z)dz, where H0 is the present value
of the Hubble constant. This converts the co-moving
differential volume r2dr to the corresponding differential
volume as a function of the redshift. The next quantity
in Eq. (7) is the number density of the loops. If the loop
size is determined by gravitation back-reaction [12, 13],
the loop number density is given by

n(z) ≈ c(z)

pΓGµt3(z)
, (9)

where p is the reconnection probability, Γ = 50 is a di-
mensionless parameter proportional to the power emitted
in gravitational waves by cosmic string loops, and t(z) is
the cosmic time which can be written as t(z) = ϕt(z)/H0.
The function c(z) ≡ 1 + 9z

z+zeq
(zeq ≃ 5440) accounts for

the fact that the loop density in radiation domination is
about 10 times that of the matter domination. In or-
der to define the F -function in Eq. (7), we assume that
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FIG. 1: Top: Normalized Correlation NC as functions of γ/π for cusps and kinks for f = 1Hz, f = 10Hz and f = 100Hz, for
Gµ = 1.0× 10−8, p = 1 and ǫ = 1.0× 10−11.
Bottom: NC as functions of frequency for cusps and kinks, for various values of γ and for the same model parameters as above.

FIG. 2: NC for cusps and kinks in Log(ǫ) (vertical axis) Log(Gµ)(horizontal axis) parameter space at frequencies applicable
to ground-based detectors (10 Hz) [15], satellite-based detectors (1 mHz) [21], and pulsar-based observations (10−8 Hz) [22].
The (base 10 logarithm of) numerical values of NC are denoted in the color bar for each plot.

the number density of cosmic string cusps and kinks at
a given z is correlated over the length scale R(z) given
by the Hubble size, R(z) ≈ t(z) [23]. The angular size
spanned by this length scale at the distance r(z) can be
calculated using the standard angular diameter-redshift

relation as

γz = 2 arctan

[

(1 + z)R(z)

r(z)

]

, (10)

where r(z) can be written as r(z) = ϕr(z)/H0. There-
fore, for the given redshift z, two directions on the sky
are correlated if their angular separation, γ, is less than

γz. This condition can be imposed by the F function,

F(γ, z) ≡ Θ

[

1− γ

γz

]

, (11)

which vanishes if γ is larger than γz , the angle subtended
by the length scale R(z). We emphasize that the correla-
tions considered here are large scale, and arise from the
fluctuations in the number of cosmic string loops in an
evolving cosmic string network. This is different from
the correlations associated with the correlation length of
a single cosmic string loop, which are important in deter-
mining the cosmic string signatures in the CMB [20]. For
cusps and kinks on cosmic string loops with sizes given
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by the gravitational back-reaction scale we have [18]

wc(f, z) =
2π2(Gµ)2

3 (1 + z)7/3ϕ2
r ϕ

1/3
t

Θ
[

1− (αfH0
(1 + z)ϕt)

−1
]

(αfH0
)

1
3

wk(f, z) =
4π2(Gµ)2

3 (1 + z)8/3ϕ2
r ϕ

2/3
t

Θ
[

1− (αfH0
(1 + z)ϕt)

−1
]

(αfH0
)

2
3

,

(12)

where α ≡ ǫΓGµ is the parameter that sets the length of
the loops. Since the function w has no angle dependence
for kinks and cups, Eq. (7) simplifies to

C = C(f, γ) =
∫

dz H−3
0 ϕV (z)n(z)w

2(f, z)F(γ, z)

=

∫

dzϕV (z)
c(z)(pΓGµ)−1

ϕ3
t (z)

w2(f, z)Θ

[

1− γ

γz

]

(13)

which is a function of the opening angle, γ, and the fre-
quency only. It is important to note that large rare events
which occur at rates smaller than the relevant time-scale
of the experiment are excluded [12] from C in numerical
calculation . This exclusion removes the a priori diver-
gence of the integrand at z = 0. The integrand of Eq.
(13) quickly vanishes with increasing redshift, implying
that the dominant contribution comes from low redshifts.
The small values of redshift correspond to closer sources,
which have larger angular size in the sky. Therefore the
angular dependence of correlations will be rather flat for
small angles, and it will rapidly vanish for large angles,
for which small values of redshift are excluded from the
integral by F(γ, z). In order to understand the relative
strength of the fluctuations at a given frequency f com-
pared to Ωgw(f) (integrated over all sky) we define the

following quantity: NC(f, γ) ≡
√

C(f,γ)

Ωgw(f) , which we refer

to as the normalized correlation. We numerically eval-
uate the integrals in Eq. (13) for kinks and cusps and
calculate the normalized correlations, as depicted in Fig.
1. We also do a parameter scan in ǫ −Gµ space. Fig. 2
shows the density plot for the strength of the background
Ωgw and NC at various values of f for cusps and kinks.
Conclusions: In this paper we have developed the for-
malism for calculating the spatial anisotropies in the
stochastic background of gravitational waves associated
with the random fluctuations in the number of sources.
The formalism is applicable to a variety of cosmological
and astrophysical models. We applied it to the case of
SBGW due to cosmic (super)string cusps and kinks, and
observed that the relative strength of the anisotropies,√
C/Ωgw , can be estimated by 1/

√
N =

√
ΓGµ, which

can be as high as 10−3. While observation of these spatial
anisotropies is unlikely for the second-generation detec-
tors that are currently being built(Advanced LIGO and
Advanced Virgo), the planned third-generation detectors

(such as Einstein Telescope) should be sufficiently sensi-
tive to measure them over a large part of the parameter
space. We emphasize that the general formalism devel-
oped here can be used to distinguish between different
SBGWmodels - that is, between models that predict sim-
ilar frequency spectra and different spatial anisotropies.
This technique will be crucial for the identification of the
source of SBGW which is expected to be observed by the
future generations of the gravitational-wave detectors.
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