HDD average seek time
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The average seek distance of a random hard drive access is 1/3rd of the maximum
seek distance, or is it? We re-examine this rule of thumb and find that it is not
exactly true. We also provide the full statistics of the seek distance and discuss
how to compute the seek time.
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A Hard Disk Drive (HDD) has a spinning disk and a rotating arm to position the read-write
head on target tracks, which are concentric circles. It takes a finite amount of time to move
the actuator from one point to another, which is referred to as the seek time [1]. Given the
task of locating many random sectors on a disk surface, the average time to find the tracks the
sectors are located on is the average seck time, and in this post we will compute the statistics
of it.

The geometry of the problem is simple: it is just a disk with a hollow center, as shown in
Figure 1.

Figure 1: A disk of inner radius r; and outer radius r, with two sample tracks located at radii
ry and ry.


https://tetraquark.vercel.app/posts/seek_time/?src=pdf
mailto:quarktetra@gmail.com

Averaging

Consider two tracks at radii 7; and 7 where 7, 5 € [r;,7,]. The radial distance between them
is |ry — ry|. If we average over every possible position of r; and r, we get the average radial
distance. Assuming that each r is equally likely to happen, the density will be Toin-’ and the
average radial distance can be calculated as:
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where we used the symmetries of the integral to split the range and convert it to a factor of
2.

The integrals were a bit involved since we had nonzero values for both the upper and lower
limits. It would be wiser if we define 7y , = 7, + 7, 5 and Ar = r, —r,. This would give a
simpler integral to deal with:

1 Ar  Ar 9 Ar Tq
Radial Distance = / / drydr |ty — 7| = / dr / diy (Fy — )
(A2 gy ORI Ty T
Ar ~9

2 .5 Ar  r,—r,
ey B — (o] 1,‘ 2
) e T T s (2)

We are treating the radius as a continuous variable although in an HDD tracks are placed in
discrete steps. Would it make any difference if we used discrete math? In that case we just
need to switch to indices and summations. Let us define r; = r;, + A j, where A is the radial
separation of two adjacent tracks, and j € [0, N — 1] is an integer that labels the N tracks on
the disk. The probability of landing on a particular track is 1/N. The averaging becomes:
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where O(+) represents the terms of order 1/N or smaller. Since the number of tracks on an
HDD disk surface is at the order of 10%, we can safely drop 1/N terms. Furthermore, since A
is the separation of the tracks, NA was nothing but the radial distance spanned by the tracks,
ie., r,—r;.

If we look at the ratio of the mean distance to the maximum distance, r, — r;, we get:
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Maximum Distance 3

Now that we have shown in multiple ways that average radial distance is 1/3 of the maximal
distance, we will proceed to show that what we got is not exactly what we were looking for!

Sampling: tracks vs sectors

There was a non-trivial assumption in the previous section: “.

happen”. We baked it into our math when we took the density as

. each r is equally likely to

L in the integrals, and
Ti

when we took the density as 1/N in the summations. However, a closer inspection shows
that this assumption is in conflict with uniformly distributed sectors across the surface. We
can explicitly show that if we uniformly sample from tracks and uniformly sample from the
locations on the tracks, i.e., the angles, the resulting distribution on the surface will not be
uniform. Let’s do a simulation to confirm. We simply sample radius values in the range [r;, 7]
from a uniform distribution, and the angle values in the range [0, 27|, and convert them into
Cartesian coordinates x and y to plot the density of points on the disk.
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Figure 2: The probability density of randomly selected points on the disk. The steep gradient
shows that uniformly sampled radius and uniformly sampled angle do not yield a
uniform distribution on the disk.

As shown in Figure 2, uniformly sampling radius and angle does not yield a uniform distribution
on the disk. This intuitively follows from the fact that sampled points are spreading to a wider
area at larger radii. In order to restore the uniform distribution on disk surface, we have to
abandon the assumption that “.. each r is equally likely to happen”.

The proper density

If we think a bit harder, we can fix this. Consider a small zone from r to r + dr, with ér < r.
The area of this zone is basically the circumference times the width, that is 27rdr. So the



area is growing o r. Therefore the probability of landing on this band should grow o r, i.e.,

it is not constant. In fact it should be

f) = 2 (5)
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so that it yields 1 when integrated from r; to r,. This also makes sense for HDDs. Assuming
that the data is uniformly distributed on the disk surface, more data will be on the outer
radius of the disk just because there is more area there. Therefore, as the head looks for
random sectors, it will find them more on the outer radius, i.e., larger radii tracks will enter
into the averaging with larger weights. We have to go back to square one and do the math all
over again with the proper probability distribution for tracks. We plug this into the averaging
integrals to get:
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The result suggests that the ratio of the mean distance to the maximum distance is

) where k = &, (7)
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which is shown in Figure 3. This is not as elegant as a simple fixed factor of 1/3, but,

nevertheless it is the correct one as we will support further below.
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Figure 3: The ratio of the mean distance to the maximum distance vs k = :—0 The marked

k value of 2.43 corresponds to typical disk sizes of outer radius r, ='1.7” and inner
radius r, = 0.7.



Brute force solution

We can always use Monte Carlo simulations to compute the results. We can select z and y in
the range [—r,,r,] from uniform distributions, and reject the z,y pairs that fall outside of the
disk. That will certainly result in a uniform coverage of the disk as shown in Figure 4.
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Figure 4: The probability density of points constructed from z and y values selected from
uniform distribution. Once the points that fall out of the disk area are rejected,
the disk is uniformly covered. We use r, = 1.7” and inner radius r; = 0.7” in the
simulation.

We can then select a pair of points 7, and 75, and build the histogram of |r, — r;|, as shown
in Figure 5.
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Figure 5: The distribution of the difference of two randomly chosen radii r, and r,. The
“model” line is explained in the next section.

Computing the mean value of the distribution and dividing it by the maximum distance, we
get approximately 0.27 to be compared to 0.27 as predicted in Eq. 7.

Shut up and calculate!

There is a famous saying among quantum physicists: in most cases quantum behavior becomes
so bizarre that there is no intuition that can help you, hence you have to just “shut up and
calculate”. Isometimes feel the same way with functions of random variables. In this particular
example, we do have an intuitive expectation on the probability distributions and finding out
that the distribution we originally used was not uniform on the disk saved the day. However,
we would have been in deep trouble if this were a three dimensional problem. It would have
been hard to visualize the distributions and/or our intuition might have just failed us. Can’t
we just shut up and calculate it formally from the first principles of random variables?
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Figure 6: Sometimes it is best to shut up and calculate. Follow the first principles of the theory
of random variables and they will lead you to the answer, assuming you don’t screw
up the math on the way.
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Let us first define the cumulative distribution function F(r,¢). We want it to cover the disk
uniformly: its increase, let’s call it dF’, should be with a uniform rate as we add small portions
of area, dA = rdrd¢. That is:
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where c is the normalization constant. It is simply inverse of the disk area:
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Since there is no ¢ dependence, we can integrate it out and define the radial probability density
function:



which is identical to Eq. 5.

We can derive the same density function starting from our trusted uniform distribution.
Consider two random variables X and Y uniformly distributed in the domain defined by
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Upon integrating out ¢, we pick up a factor of 27, and get the same expression for f(r) as we
had in Egs. 10 and 5.

We have shown in three different ways that the radius, R, will be a random variable with density
f(r). Then we take two such random radii and calculate their radial separation: S = |R; — Rs|,
which is yet another random variable. Figure 5 shows the simulation results for S, and it looks
deceptively like a line. However, we do know it can’t be an exact line because then it would
have made it a triangle and a triangle has its center of mass at 1/3 of the distance from the
edge. But we have shown that the real answer deviates from 1/3. So we should expect some
higher order terms in play.

If we really wanted we could calculate the exact form of the density function of the random
variable S. It is best to start from the cumulative distribution:

Fy(s) = P(lry — ] < 5) = // drydry f(r) f(ry). (12)
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We need to figure out the domain for which |r; —r,| < s is satisfied. It is the green shaded
area in Figure 7.
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Figure 7: The domain of interest for integration. In the green shaded area |ro — 7| < s is
satisfied.

Therefore, the cumulative probability function of the difference can be written as
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from which we can get the probability density by differentiating with respect to s:
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This is the “model” line in Figure 5.

The distribution does differ from a line with a cubic term. fg(s) completely defines the statis-
tics of the radial distance of two randomly selected sectors. We can verify that it reproduces
the average value by computing LT"_” sf(s)ds, which indeed gives the result in Eq. 7.
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Seek time

This post is titled “HDD average seek time”, but so far we have been computing distances.
The relation between the distance and the time would have been in a one to one relation if
the head moved with constant speed on the radial direction, none of which is exactly true.
The head rotates around a pivot point that sits outside the disk, and follows an arc of a circle.
Furthermore, it does not move with constant speed as it starts from zero speed, accelerates,
slows down and settles at the destination track. Therefore the seek time includes higher order
terms. However, we can use the ratio of average distance to the maximum distance as a proxy
to estimate the ratio of average seek time to the time it would take the head to move between
the opposite edges of the disk, i.e., the maximum seek time. I will create a separate post to
compute the seek time in more detail. Stay tuned!

Conclusions

HDDs are complicated beasts and in this post we over-simplified few things. An important
simplification we made was related to the assumption that the data is uniformly spread on
the disk. This is not completely accurate. The capacity density of HDD surfaces has some
nontrivial radial dependence [2]. This is an artifact of the skew of the read-write head with
respect to the track direction. There are many other effects, which are beyond the scope of
this post, that will cause nonuniform distribution of capacity and, in turn the data. In order
to address such effects one needs to define f(r) to incorporate the variations and do the math
accordingly.

The bottom line is that it is fair to say that average seek time is about 1/3 of the full seek
time with certain small and nontrivial deviations.
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