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This article presents a comprehensive derivation of the separation of variables
technique applied to partial differential equations in spherical coordinates. We ex-
amine the process of decomposing the Laplace equation into its radial and angular
components, leading to solutions involving spherical harmonics. The discussion
includes a detailed analysis of the radial dependence, angular components, and
their relationship through Sturm-Liouville theory. This mathematical treatment
is fundamental to various physics applications, including quantum mechanics, elec-
tromagnetism, and gravitational field theory.

blog: https://tetraquark.vercel.app/posts/separationSpherical/

email: quarktetra@gmail.com

We would like solve the Laplace’s equation in spherical coordinates as illustrated in Figure 1.
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Figure 1: The spherical coordinates.

In the spherical coordinates, the Laplace equation reads:

∇2𝜓 = [ 1
𝑟2

𝜕
𝜕𝑟 (𝑟2 𝜕

𝜕𝑟) + 1
𝑟2 sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃 𝜕

𝜕𝜃) + 1
𝑟2 sin2 𝜃

𝜕2

𝜕𝜙2 ] 𝜓 (1)

We can separate the variables as 𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)Θ(𝜃)Φ(𝜙):
ΘΦ
𝑟2

𝑑
𝑑𝑟 (𝑟2 𝑑𝑅

𝑑𝑟 ) + 𝑅Φ
𝑟2 sin 𝜃

𝑑
𝑑𝜃 (sin 𝜃𝑑Θ

𝑑𝜃 ) + 𝑅Θ
𝑟2 sin2 𝜃

𝜕2Φ
𝜕𝜙2 = 0, (2)

or equivalently
sin2 𝜃

𝑅
𝑑
𝑑𝑟 (𝑟2 𝑑𝑅

𝑑𝑟 ) + sin 𝜃
Θ

𝑑
𝑑𝜃 (sin 𝜃𝑑Θ

𝑑𝜃 ) = − 1
Φ

𝜕2Φ
𝜕𝜙2 . (3)

Since the left-hand side of Eq. 3 depends on 𝑟 and 𝜃 only, and the right one depends on 𝜙
only, overall they can only be equal to a constant, which we will call 𝑚2. This separates out
the Φ function. Furthermore, since 𝜙 is the angle, the solutions have to be 2𝜋 periodic, which
gives:

Φ(𝜙) = 𝑒𝑖𝑚𝜙. (4)
Putting this back in Eq. 3 and dividing the it by sin2 𝜃 we get:

1
𝑅

𝑑
𝑑𝑟 (𝑟2 𝑑𝑅

𝑑𝑟 ) = − 1
sin 𝜃Θ

𝑑
𝑑𝜃 (sin 𝜃𝑑Θ

𝑑𝜃 ) − 𝑚2

sin2 𝜃
. (5)

Similarly, since the left-hand side of Eq. 5 depends on 𝑟 only, and the right one depends on 𝜃
only, overall they can only be equal to a constant, which we will call 𝑐.
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Radial dependence

The form of the solution for 𝑅(𝑟) is easy to guess since the derivatives are balanced by the
powers of 𝑟, and therefore, a function of the form 𝑟𝑙 will preserve its form up to a coefficient.

𝑑
𝑑𝑟 (𝑟2 𝑑𝑟𝑙

𝑑𝑟 ) − 𝑐𝑟𝑙 = [𝑙(𝑙 + 1) − 𝑐] 𝑟𝑙 = 0 ⟹ 𝑐 = 𝑙(𝑙 + 1). (6)

However, notice the unexpected symmetry of 𝑙(𝑙 + 1) under 𝑙 → −𝑙 − 1. This means, if 𝑟𝑙 is a
solution, so is 𝑟−𝑙−1. This suggests the following form of solution for 𝑅:

𝑅(𝑟) = 𝑎𝑙𝑟𝑙 + 𝑏𝑙
𝑟𝑙+1 . (7)

Angular part

Putting this back in Eq. 5 yields

1
sin 𝜃

𝑑
𝑑𝜃 (sin 𝜃𝑑Θ

𝑑𝜃 ) + [𝑙(𝑙 + 1) − 𝑚2

sin2 𝜃
] Θ = 0. (8)

Now define cos 𝜃 = 𝑥, which gives 𝑑
𝑑𝜃 = 𝑑𝑥

𝑑𝜃
𝑑

𝑑𝑥 = − sin 𝜃 𝑑
𝑑𝑥 and insert this back in Eq.8:

(1 − 𝑥2)𝑑2Θ
𝑑𝑥2 − 2𝑥𝑑Θ

𝑑𝑥 + [𝑙(𝑙 + 1) − 𝑚2

1 − 𝑥2 ] Θ = 0. (9)

Let’s first attempt to solve this for 𝑚 = 0 using power series expansion[1]:

Θ(𝑥) =
∞

∑
𝑘=0

𝑐𝑘𝑥𝑘. (10)

Inserting this back to Eq. 9 we get:

0 =
∞

∑
𝑘=0

𝑐𝑘𝑥𝑘−2𝑘(𝑘 − 1) −
∞

∑
𝑘=0

𝑐𝑘𝑥𝑘𝑘(𝑘 − 1) +
∞

∑
𝑘=0

𝑐𝑘𝑥𝑘 [𝑙(𝑙 + 1) − 2𝑘]

=
∞

∑
𝑘=2

𝑐𝑘𝑥𝑘−2𝑘(𝑘 − 1) −
∞

∑
𝑘=0

𝑐𝑘𝑥𝑘𝑘(𝑘 − 1) +
∞

∑
𝑘=0

𝑐𝑘𝑥𝑘 [𝑙(𝑙 + 1) − 2𝑘]

=
∞

∑
𝑘=0

𝑐𝑘+2𝑥𝑘(𝑘 + 2)(𝑘 + 1) +
∞

∑
𝑘=0

𝑐𝑘𝑥𝑘 [𝑙(𝑙 + 1) − 𝑘(𝑘 + 1)]

=
∞

∑
𝑘=0

{𝑐𝑘+2(𝑘 + 2)(𝑘 + 1) − 𝑐𝑘 [𝑘(𝑘 + 1) − 𝑙(𝑙 + 1)]} 𝑥𝑘. (11)
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This implies

𝑐𝑘+2 = 𝑘(𝑘 + 1) − 𝑙(𝑙 + 1)
(𝑘 + 2)(𝑘 + 1) 𝑐𝑘 = (𝑘 − 𝑙)(𝑙 + 𝑘 + 1)

(𝑘 + 2)(𝑘 + 1) 𝑐𝑘, (12)

which is the recurrence equation for the expansion coefficients.

This is a remarkable equation since it has profound consequences. Earlier in this blog, we
looked at the Quantum Harmonic Oscillator and showed that for a similar series expansion to
converge, we had to have the energy quantized. In this particular problem, until this point,
we have no indication of 𝑙 being an integer. But now, we see that it has to be an integer so
that the series truncates for 𝑘 > 𝑙 (for every other 𝑘). That’s the first observation.

The second observation is associated with the parity symmetry of the original differential Eq.
9, which is invariant under 𝑥 → −𝑥 upto the overall sign. This shows that the solutions will
also be eigenstates of the parity operator, i.e., odd and even 𝑘 terms should not mix.

We have a couple of ways of terminating the series. The first one is what we have discussed
above, i.e., settin 𝑙 to an integer 𝑘∗, which will zero out every other 𝑐𝑘. The 𝑐𝑘’s, with 𝑘 > 𝑙,
not addressed by this truncation need to be eliminated directly by their root coefficient, 𝑐0 or
𝑐1. To be more specific, take an example 𝑙 = 1. The 𝑐𝑘’s with odd 𝑘 quickly terminate after
𝑘 = 1: 𝑐1, 0, ⋯. The even ones will keep growing: 𝑐0, 𝛼𝑐0, 𝛽𝛼𝑐0, ⋯. The only way to tame this
series is by killing it at its root, i.e., by setting it 𝑎0 = 0 so that all the even terms drop out.
This shows that even odd powers of 𝑥 will not mix preserving respecting the parity symmetry
of the original equation.

From Eq. 12, we can explicitly write the fist few Legendre polynomials:

𝑃0(𝑥) = 1,
𝑃1(𝑥) = 𝑥,
𝑃2(𝑥) = 1

2(3𝑥2 − 1),

𝑃3(𝑥) = 1
2(5𝑥3 − 3𝑥),

𝑃4(𝑥) = 1
8(35𝑥4 − 30𝑥2 + 3). (13)

Having shown that Legendre polynomials solve the differential equation (with 𝑚 = 0),

(1 − 𝑥2)𝑑2𝑃𝑙
𝑑𝑥2 − 2𝑥𝑑𝑃𝑙

𝑑𝑥 + 𝑙(𝑙 + 1)𝑃𝑙 = 0. (14)

We now need to address the full equation with 𝑚 ≠ 0. The idea would be to differentiate 𝑚
times to create the 𝑚2 term. For this, we will need the Leibniz’s formula:

𝑑𝑚

𝑑𝑥𝑚 [𝑓(𝑥)𝑔(𝑥)] =
𝑛

∑
𝑘=0

(𝑛
𝑘)𝑑𝑘𝑓

𝑑𝑥𝑘
𝑑𝑛−𝑘𝑔
𝑑𝑥𝑛−𝑘 (15)
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Let’s dive into the differentiation:

0 = 𝑑𝑚

𝑑𝑥𝑚 [(1 − 𝑥2)𝑑2𝑃𝑙
𝑑𝑥2 − 2𝑥𝑑𝑃𝑙

𝑑𝑥 + 𝑙(𝑙 + 1)𝑃𝑙]

= (1 − 𝑥2) 𝑑𝑚

𝑑𝑥𝑚
𝑑2𝑃𝑙
𝑑𝑥2 + 𝑚 𝑑

𝑑𝑥(1 − 𝑥2) 𝑑𝑚−1

𝑑𝑥𝑚−1
𝑑2𝑃𝑙
𝑑𝑥2 + 𝑚(𝑚 − 1)

2
𝑑2

𝑑𝑥2 (1 − 𝑥2) 𝑑𝑚−2

𝑑𝑥𝑚−2
𝑑2𝑃𝑙
𝑑𝑥2

−2𝑥 𝑑𝑚

𝑑𝑥𝑚
𝑑𝑃𝑙
𝑑𝑥 − 2𝑚 𝑑

𝑑𝑥(𝑥) 𝑑𝑚−1

𝑑𝑥𝑚−1
𝑑𝑃𝑙
𝑑𝑥 + 𝑙(𝑙 + 1) 𝑑𝑚

𝑑𝑥𝑚 𝑃𝑙

= (1 − 𝑥2)𝑢″ − 2𝑚𝑥𝑢′ − 𝑚(𝑚 − 1)𝑢 − 2𝑥𝑢′ − 2𝑚𝑢 + 𝑙(𝑙 + 1)𝑢
= (1 − 𝑥2)𝑢″ − 2(𝑚 + 1)𝑥𝑢′ − 𝑚(𝑚 + 1)𝑢 + 𝑙(𝑙 + 1)𝑢
= (1 − 𝑥2)𝑢″ − 2(𝑚 + 1)𝑥𝑢′ − (𝑙 − 𝑚)(𝑙 + 𝑚 + 1)𝑢, (16)

where 𝑢 ≡ 𝑑𝑚𝑃𝑙
𝑑𝑥𝑚 . We still need to modify the equation further so that it matches Eq.9. First

of all, we note that the equation we want to get at was self-adjoint, and we kind of destroyed
it as we acted with 𝑑𝑚

𝑑𝑥𝑚 . Let’s restore it and see where it takes us.

Sturm–Liouville theory

We are going to use some machinery from Sturm–Liouville theory on second order differential
equations. Consider the second order differential operator ℒ[1]:

ℒ𝑢 = (𝑝0(𝑥) 𝑑2

𝑑𝑥2 + 𝑝1(𝑥) 𝑑
𝑑𝑥 + 𝑝2(𝑥)) 𝑢. (17)

We are going to define the inner product in the function space as an integral in a range [𝑎, 𝑏].

⟨𝑢|ℒ|𝑢⟩ ≡ ∫
𝑏

𝑎
𝑑𝑥𝑢(𝑥)ℒ𝑢(𝑥) = ∫

𝑏

𝑎
𝑑𝑥𝑢(𝑥) (𝑝0

𝑑2

𝑑𝑥2 + 𝑝1
𝑑

𝑑𝑥 + 𝑝2) 𝑢

= ∫
𝑏

𝑎
𝑑𝑥 (𝑝0𝑢𝑢″ + 𝑝1𝑢𝑢′ + 𝑢2𝑝2) . (18)

We can integrate Eq.18 by parts. Let’s look at each term one by one:

𝑢𝑝0𝑢″ = 𝑢 𝑑2

𝑑𝑥2 (𝑝0𝑢) − 𝑑
𝑑𝑥(𝑢𝑝′

0𝑢) + 2𝑢𝑝′
0𝑢′

𝑢𝑝1𝑢′ = −𝑢 𝑑
𝑑𝑥(𝑝1𝑢) + 𝑑

𝑑𝑥(𝑢𝑝1𝑢). (19)

Putting this back in Eq.18 gives:
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⟨𝑢|ℒ|𝑢⟩ = [𝑢(𝑝1 − 𝑝′
0)𝑢]𝑏𝑎 + ∫

𝑏

𝑎
𝑑𝑥𝑢 ( 𝑑2

𝑑𝑥2 (𝑝0𝑢) − 𝑑
𝑑𝑥(𝑝1𝑢) + 𝑝2𝑢)

= [𝑢(𝑝1 − 𝑝′
0)𝑢]𝑏𝑎 + ∫

𝑏

𝑎
𝑑𝑥𝑢 ̄ℒ𝑢, (20)

where the adjoint operator ̄ℒ is defined as:

̄ℒ𝑢 = 𝑑2

𝑑𝑥2 (𝑝0𝑢) − 𝑑
𝑑𝑥(𝑝1𝑢) + 𝑝2𝑢. (21)

Although ̄ℒ𝑢 looks pretty different from ℒ𝑢 in Eq. 17, they can actually be the same if 𝑝1 = 𝑝′
0.

Such ℒ operators are self-adjoint. Furthermore, note that the boundary term also drops out
for self-adjoint operators.

The good news is that if an equation is not self adjoint, it can be converted into that form if
it gets multiplied by the following factor:

1
𝑝0(𝑥)exp {∫

𝑥
𝑑𝑡𝑝1(𝑡)

𝑝0(𝑡)} . (22)

Let’s revisit Eq. 16 to find the factor that will make the equation self-adjoint:

1
1 − 𝑥2 exp {− ∫

𝑥
𝑑𝑡2(𝑚 + 1)𝑡

1 − 𝑡2 } = 1
1 − 𝑥2 exp {(𝑚 + 1) ∫

𝑥 𝑑(1 − 𝑡2)
1 − 𝑡2 } = (1 − 𝑥2)𝑚. (23)

We will take this factor, multiply Eq. 16 with it to get:

𝑑
𝑑𝑥 ((1 − 𝑥2)𝑚+1𝑢′) − (𝑙 − 𝑚)(𝑙 + 𝑚 + 1)𝑢 = 0. (24)

Finally, we will want to absord half power of that coefficient into 𝑢 by defining

𝑣(𝑥) = (1 − 𝑥2) 𝑚
2 𝑢(𝑥) ⟺ 𝑢(𝑥) = (1 − 𝑥2)− 𝑚

2 𝑣(𝑥), (25)

to get

𝑢′ = [𝑣′ + 𝑚𝑣𝑥
1 − 𝑥2 ] (1 − 𝑥2)− 𝑚

2 ,

𝑢″ = [𝑣″ + 2𝑚𝑣′𝑥
1 − 𝑥2 + 𝑚𝑥

1 − 𝑥2 + 𝑚(𝑚 + 2)𝑥2𝑣
(1 − 𝑥2)2 ] (1 − 𝑥2)− 𝑚

2 . (26)

The new function 𝑣 satisfies the following equation:
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(1 − 𝑥2) 𝑑2𝑣
𝑑𝑥2 − 2𝑥 𝑑𝑣

𝑑𝑥 + (𝑙(𝑙 + 1) − 𝑚2

1 − 𝑥2 ) 𝑣 = 0, (27)

which is identical to Eq. 9. In conclusion, the angular part of the solution is given by the
associated Legendre polynomials as below:

𝑃 𝑚
𝑙 (𝑥) = (1 − 𝑥2) 𝑚

2
𝑑𝑚

𝑑𝑥𝑚 𝑃𝑙(𝑥). (28)

Full solution

Note that the highest power in 𝑃𝑙 is 𝑙, and for 𝑚 > 𝑙, we run out of 𝑥’s to differentiate. This
automatically limits |𝑚| to 𝑙. Putting all pieces together, the full solution to the Laplace
equation reads:

𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)Θ(𝜃)Φ(𝜙) =
∞

∑
𝑙=0

𝑙
∑

𝑚=−𝑙
(𝑎𝑙𝑚𝑟𝑙 + 𝑏𝑙𝑚

𝑟𝑙+1 ) 𝑃 𝑚
𝑙 (cos 𝜃)𝑒𝑖𝑚𝜙. (29)

[1] G. B. Arfken, H.-J. Weber, and F. E. Harris, Mathematical methods for physicists.
Oxford: Academic, 2012.
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