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Problem Statement

Consider two spin-1/2 particles in the state with 𝑆1𝑧 = 1/2 and 𝑆2𝑧 = −1/2 at time 𝑡 = −∞.
They are then subject to an interaction of the form

𝐻1 = 𝑎0𝑒−𝑡2/𝜏2S1 ⋅ S2, (1)

where 𝑎0 and 𝜏 > 0 are constant parameters. We want to calculate the probability of finding
the system in the state with 𝑆1𝑧 = −1/2 and 𝑆2𝑧 = 1/2 at 𝑡 = ∞.

The exact solution

We first note that the Schrödinger equation can formally be solved as

𝜓(𝑡) = 𝑒−𝑖 ∫𝑡
𝑡0

𝑑 ̃𝑡𝐻( ̃𝑡)𝜓(𝑡0). (2)

However, it is important to mention that if the Hamiltonian does not commute with itself at
different times, [𝐻(𝑡1), 𝐻(𝑡2)] ≠ 0, then we cannot exponentiate 𝐻 to get the solution above.
In that case we would have to solve the differential equation honestly. Since the Hamiltonian
in Eq. 1 commutes with itself at any different times, Eq. 2 will work. Now we need to
handle exponential of an operator, 𝐻. It could be dealt with an infinite Taylor expansion, but
that would be painful. A better method is to consider the problem in the eigenbasis of 𝐻.
We expand the initial state in terms of the eigenstates of 𝐻 so that 𝐻 in the exponent can
be replaced by its eigenvalues. The initial state is | ↑↓⟩. We will need the Clebsch-Gordan
coefficients for 2-spin 1/2 particles.
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Let us remember what the Clebsch-Gordan are: First of all |1, ±1⟩ is trivial, the states have
to be both ↑ (↓) so that spin along 𝑧 is +1 (−1). The hard ones are |0, 0⟩ and |1, 0⟩. They
are superposition of | ↑↓⟩ and | ↓↑⟩ so that spin along 𝑧 is zero. We can first figure out the
coefficients for |0, 0⟩, which is the state to be annihilated by 𝑆− = 𝑆1− + 𝑆1−. Applying this
onto this state will immediately reveal that |0, 0⟩ = |↑↓⟩−|↓↑⟩√

2 . And |1, 0⟩ has to be orthogonal
to |0, 0⟩ which means |1, 0⟩ = |↑↓⟩+|↓↑⟩√

2 up to a phase, which is irrelevant. From here we can get
inverse Clebsch-Gordan coefficients to expand | ↑↓⟩, which gives

|| ↑↓⟩ = |0, 0⟩ + |1, 0⟩√
2

. (3)

𝐻 can be written as

𝐻1(𝑡) = 𝑎0𝑒− 𝑡2
𝜏2 S1 ⋅ 𝑆2 = 𝑎0𝑒− 𝑡2

𝜏2
J2 − S2

1 − S2
2

2
= 𝑎0

2 𝑒− 𝑡2
𝜏2 (J2 − S2

1 − S2
2). (4)

We know that 𝑆2
1 = 𝑆2

2 = 3/4. Then,

|𝜓(𝑡)⟩ = 𝑒𝑥𝑝 [−𝑖 ∫
𝑡

𝑡0

𝑑 ̃𝑡𝑎0
2 𝑒− ̃𝑡2

𝜏2 (J2 − S2
1 − S2

2)] |0, 0⟩ + |1, 0⟩√
2

= 𝑒𝑥𝑝 [−𝑖𝑓(𝑡)(2 − 3/4 − 3/4)] |1, 0⟩√
2

+ 𝑒𝑥𝑝 [−𝑖𝑓(𝑡)(0 − 3/4 − 3/4)] |0, 0⟩√
2

= 𝑒− 𝑖𝑓(𝑡)
2

|1, 0⟩√
2

+ 𝑒 3𝑖𝑓(𝑡)
2

|0, 0⟩√
2

, (5)

where 𝑓(𝑡) ≡ ∫𝑡
𝑡0

𝑑 ̃𝑡𝑎0
2 𝑒− ̃𝑡2

𝜏2 . We can get the probabilities of measurements in this basis, or we
can go back to the original one which is more transparent. We expand |0, 0⟩ and |1, 0⟩ in spin
up-down basis to get

|𝜓(𝑡)⟩ = [𝑒− 𝑖𝑓(𝑡)
2 + 𝑒 3𝑖𝑓(𝑡)

2 ] | ↑, ↓⟩
2 + [−𝑒 3𝑓(𝑡)

2 + 𝑒− 𝑖𝑓(𝑡)
2 ] | ↓, ↑⟩

2
= 𝑒𝑖/2𝑓(𝑡) (cos[𝑓(𝑡)]| ↑, ↓⟩ − 𝑖 sin[𝑓(𝑡)]| ↓, ↑⟩) . (6)

The probabilities become

Prob (| ↑, ↓⟩ → | ↑, ↓⟩) = cos2[𝑓(𝑡)], Prob(| ↑, ↓⟩ → | ↓, ↑⟩) = sin2[𝑓(𝑡)]. (7)

The solution with perturbation theory

We can approach the from the perspective of time dependent perturbation theory. The funda-
mental object we have to compute is

𝑑𝑓𝑖(𝑡) = −𝑖 ∫
𝑡

𝑡0

𝑑 ̃𝑡𝑒𝑖𝐸(0)
𝑓𝑖 ⟨𝑓|𝐻1( ̃𝑡)|𝑖⟩ + 𝛿𝑓𝑖. (8)
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For this problem we are not calculating a function of an operator, operator appears by itself,
and it is easy to get the answer in this basis using

2 S1 ⋅ S2 = 𝑆1−𝑆2+ + 𝑆1+𝑆2− + 2 𝑆1𝑧𝑆2𝑧. (9)

For 𝑓 = 𝑖 only 𝑆1𝑧𝑆2𝑧 contributes to give

𝑑𝑓=𝑖(𝑡) = −𝑖 ∫
𝑡

𝑡0

𝑑 ̃𝑡𝑒𝑖𝐸(0)
𝑓𝑖 ̃𝑡⟨↑, ↓ |𝐻1( ̃𝑡)| ↑, ↓⟩ + 1 = 1 + 𝑖𝑓(𝑡)

2 . (10)

For 𝑓 = | ↓, ↑⟩ only 𝑆1+𝑆2− contributes to give

𝑑𝑓≠𝑖(𝑡) = −𝑖 ∫
𝑡

𝑡0

𝑑 ̃𝑡𝑒𝑖𝐸(0)
𝑓𝑖 ̃𝑡⟨↓, ↑ |𝐻1( ̃𝑡)| ↑, ↓⟩ = −𝑖𝑓(𝑡). (11)

There are two important points here. First one is 𝐸(0)
𝑓𝑖 . Remember that superscript (0)

reminds us that it comes from the differences of background energy originating from 𝐻0, and
for this case 𝐸(0)

𝑓𝑖 = 0. Second point is rather technical, but still important. If you calculate
probabilities from 𝑑𝑓=𝑖(𝑡) and 𝑑𝑓≠𝑖(𝑡), you see that the sum is not equal to 1. This is because
the coefficients are not normalized yet. The normalized amplitudes would be the ones above
divided by the normalization. The corresponding probabilities are

𝑓2(𝑡)
1 + 5𝑓2(𝑡)/4, 1 + 𝑓2(𝑡)/4

1 + 5/4𝑓2(𝑡) . (12)

Note that this normalization is too precise, it is like giving a result of a division with 2 decimal
points although the numbers you started with have 1 decimal point. In other words the
procedure we follow is correct only in the 𝑓2 order, and we need to expand the result and drop
terms higher than 𝑓2 to get

1
1 + 5𝑓2(𝑡)/4 ≃ 1 − 5𝑓2(𝑡)/4. (13)

Therefore, the probabilities with the correct accuracy are given by

Prob (| ↑, ↓⟩ → | ↑, ↓⟩) = 1 − 𝑓2(𝑡), and Prob(| ↑, ↓⟩ → | ↓, ↑⟩) = 𝑓2(𝑡). (14)

Note that the normalization procedure did not change Prob (| ↑, ↓⟩ →↓, ↑⟩) since it was already
of 𝑓2 order, it just changed the other one so that total probability is 1. In all the other
transitions are ruled out, we could use this idea to get

Prob (| ↑, ↓⟩ → | ↑, ↓⟩) = 1 − Prob (| ↑, ↓⟩ → | ↓, ↑⟩) . (15)

However, if there are more than two possible transitions, we will have to normalize the coeffi-
cients first. Note that perturbative result is in agreement with the exact one in Eq. 7 at 𝑓2

order if 𝑓 ≪ 1. This is also the requirement from the perturbation side since we approximated
the solution to the integral equation with the first trial function 𝑓(𝑡). If 𝑓 ≪ 1, cutting the
trial at the first order is a good approximation to the exact solution.
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