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A rigorous proof of the Wiener-Khinchin theorem, which establishes the funda-
mental relationship between the autocorrelation function and the spectral power
density of a random process. This theorem is central to signal processing and sta-
tistical analysis, providing the mathematical foundation for understanding how
random signals distribute their energy across different frequencies. The proof
demonstrates the elegant connection between time-domain and frequency-domain
representations of stochastic processes.
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Consider a random variable 𝑥(𝑡) which evolves with time. The auto correlation function is
defined as:

𝐶(𝜏) = ⟨𝑥(𝑡)𝑥(𝑡 + 𝜏)⟩. (1)

The Fourier transform of 𝐶(𝜏) is defined as

̂𝐶(𝜔) = ∫
∞

−∞
𝑑𝜏𝑒−𝑖𝜔𝜏𝐶(𝜏). (2)

Let us define the truncated Fourier transform of 𝑥(𝑡) as

̂𝑥𝑇 (𝜔) = ∫
𝑇
2

− 𝑇
2

𝑑𝑡𝑥(𝑡)𝑒−𝑖𝜔𝑡, (3)

and the truncated spectral power density as

𝑆𝑇 (𝜔) = 1
𝑇 ⟨| ̂𝑥𝑇 (𝜔)|2⟩. (4)

The spectral power density is the limiting case of 𝑆𝑇 (𝜔):
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𝑆(𝜔) = lim
𝑇 →∞

𝑆𝑇 (𝜔) = lim
𝑇 →∞

1
𝑇 ⟨| ̂𝑥𝑇 (𝜔)|2⟩. (5)

The Wiener-Khinchin Theorem states that if the limit in Eq. 5 exists, then the spectral power
density is the Fourier transform of the the auto correlation function, i.e., the following equality
holds:

𝑆(𝜔) = ∫
∞

−∞
𝑑𝜏𝑒−𝑖𝜔𝜏𝐶(𝜏). (6)

We start from the average of | ̂𝑥𝑇 (𝜔)|2

| ̂𝑥𝑇 (𝜔)|2 = ∫
𝑇
2

− 𝑇
2

∫
𝑇
2

− 𝑇
2

𝑑𝑡′𝑑𝑡⟨𝑥(𝑡′)𝑥(𝑡)⟩𝑒−𝑖𝑤(𝑡′−𝑡)

= ∫
𝑇
2

− 𝑇
2

∫
𝑇
2

− 𝑇
2

𝑑𝑡′𝑑𝑡𝐶(𝑡′ − 𝑡)𝑒−𝑖𝜔(𝑡′−𝑡). (7)

Note that 𝐶(𝑡′ − 𝑡)𝑒−𝑖𝜔(𝑡′−𝑡) depends only on the difference of the parameters.

The key insight is that we can change variables from (𝑡, 𝑡′) to (𝑢, 𝑣) where 𝑢 = 𝑡′ − 𝑡 and
𝑣 = 𝑡′ + 𝑡. This transformation maps the square integration domain to a diamond-shaped
domain, and since the integrand depends only on 𝑢 = 𝑡′ − 𝑡, the integration over 𝑣 gives the
height of the integration region.

We want to compute the integral 𝐼 = ∫
𝑇
2

−𝑇
2

∫
𝑇
2

−𝑇
2

𝑑𝑡′𝑑𝑡𝑓(𝑡′ − 𝑡).

The argument of the function begs for a change of coordinates:

𝑢 = 𝑡′ − 𝑡, and 𝑣 = 𝑡 + 𝑡′, (8)

and the associated inverse transform reads:

𝑡′ = 𝑢 + 𝑣
2 , and 𝑡 = 𝑣 − 𝑢

2 . (9)

This transformation will rotate and scale the integration domain as shown in Figure 1.
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Figure 1: The integration domain in the 𝑡 − 𝑡′ domain (left) and 𝑢 − 𝑣 domain(right). Since
there is no 𝑣 dependence, 𝑣 integration gives the height of the green and blue slices.

The equation of the top boundary on the right can be written as 𝑣 = 𝑇 − 𝑢, and on the left as
$ v= T+u$. We can actually combine them as 𝑣 = 𝑇 − |𝑢|. We can do the same analysis for
the lower boundaries to see that the height of the slices at a given 𝑢 is 2(𝑇 − |𝑢|). This will
help us easily integrate 𝑣 out as follows:

𝐼 = ∫
𝑇
2

−𝑇
2

∫
𝑇
2

−𝑇
2

𝑑𝑡′𝑑𝑡𝑓(𝑡′ − 𝑡) = ∬
𝑆𝑢,𝑣

∣𝜕(𝑡, 𝑡′)
𝜕(𝑢, 𝑣) ∣ 𝑑𝑣𝑑𝑢𝑓(𝑢)

= ∫
𝑇

−𝑇
2(𝑇 − |𝑢|) × 1

2𝑑𝑣𝑑𝑢𝑓(𝑢) = ∫
𝑇

−𝑇
𝑑𝑢𝑓(𝑢)(𝑇 − |𝑢|), (10)

where ∣𝜕(𝑡,𝑡′)
𝜕(𝑢,𝑣) ∣ = 1

2 is the determinant of the Jacobian matrix associated with the transformation
in Eq. 9.

Therefore, setting 𝑢 = 𝜏 , we get

| ̂𝑥𝑇 (𝜔)|2 = ∫
𝑇

−𝑇
𝑑𝜏𝑒−𝑖𝜔𝜏𝐶(𝜏)(𝑇 − |𝜏|). (11)

Taking the average we have the required result:

𝑆(𝜔) = lim
𝑇 →∞

𝑆𝑇 (𝜔) = lim
𝑇 →∞

1
𝑇 ⟨| ̂𝑥𝑇 (𝜔)|2⟩

= lim
𝑇 →∞

1
𝑇 ∫

𝑇

−𝑇
𝑑𝜏𝑒−𝑖𝜔𝜏𝐶(𝜏)(𝑇 − |𝜏|) = ∫

∞

−∞
𝑑𝜏𝑒−𝑖𝜔𝜏𝐶(𝜏), (12)

which completes the proof.
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