Wiener Khinchin Theorem
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A rigorous proof of the Wiener-Khinchin theorem, which establishes the funda-
mental relationship between the autocorrelation function and the spectral power
density of a random process. This theorem is central to signal processing and sta-
tistical analysis, providing the mathematical foundation for understanding how
random signals distribute their energy across different frequencies. The proof
demonstrates the elegant connection between time-domain and frequency-domain
representations of stochastic processes.
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Consider a random variable z(¢) which evolves with time. The auto correlation function is
defined as:
C(r) = (z(t)z(t + 7). (1)

The Fourier transform of C(7) is defined as

Clw) = /_ dre=“TC/(7). 2)

Let us define the truncated Fourier transform of z(t) as

Fo(w) = Z " dta(t)eiet, (3)
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and the truncated spectral power density as

Sr(w) = @), (1

The spectral power density is the limiting case of Sy (w):
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S(w) = Jim Sp(w) = lim (|zp(w)P). (5)

The Wiener-Khinchin Theorem states that if the limit in Eq. 5 exists, then the spectral power
density is the Fourier transform of the the auto correlation function, i.e., the following equality
holds:

S(w) :[ dre”™TC(7). (6)

We start from the average of |Z,(w)|?
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Note that C(t' — t)e ('~ depends only on the difference of the parameters.

The key insight is that we can change variables from (¢,t") to (u,v) where u = t' —t and
v = t' +t. This transformation maps the square integration domain to a diamond-shaped
domain, and since the integrand depends only on u = ¢’ — t, the integration over v gives the
height of the integration region.
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We want to compute the integral I = [2 [2 dt’dtf(¢' —t).
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The argument of the function begs for a change of coordinates:

u=t —t, and v=t+1t, (8)

and the associated inverse transform reads:

u—+v v—Uu
and t= .
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This transformation will rotate and scale the integration domain as shown in Figure 1.
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Figure 1: The integration domain in the ¢ — ¢’ domain (left) and v — v domain(right). Since
there is no v dependence, v integration gives the height of the green and blue slices.

The equation of the top boundary on the right can be written as v = T — u, and on the left as
$ v= T+4u$. We can actually combine them as v =T — |u|. We can do the same analysis for
the lower boundaries to see that the height of the slices at a given u is 2(T — |u|). This will
help us easily integrate v out as follows:
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where ggi’t;}; = % is the determinant of the Jacobian matrix associated with the transformation
in Eq. 9.

Therefore, setting u = 7, we get
T .
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Taking the average we have the required result:
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which completes the proof.



