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This article examines the mutual inductance between parallel wire segments, a
fundamental configuration in electrical circuits and transmission lines. Building
upon our previous analysis of single-wire self-inductance, we derive the magnetic
coupling between current-carrying conductors using the Biot-Savart law. We ad-
dress the mathematical challenges of finite-length conductors and present a com-
plete solution that includes both the self-inductance of each wire and their mutual
coupling.

blog: https://tetraquark.vercel.app/posts/wirePairInductance/ email: quarktetra@gmail.com

Magnetic Field of a Wire Segment

I have discussed the self-inductance of a wire segment in a previous post. Now I will discuss
the mutual inductance of two wire segments. For completeness, I will reproduce parts of the
self-inductance calculations.

Figure 1 shows a wire segment of length 𝐿 carrying a current 𝐼 and located at the origin, and
its pair carrying the return current 𝐼 and located at 𝑧 = 𝑑.
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Figure 1: A segment of a wire carrying current 𝐼 and its pair carrying the return current at
𝑧 = 𝑑.

The magnetic field at an arbitrary point r created by a current distribution J(r′) is given by
the Biot-Savart law[1]:

B(r) = 𝜇0
4𝜋 ∫ 𝑑3r′ J(r′) × (r − r′)

(r − r′)3 , (1)

J(r′) = 𝐼
𝜋𝜌2

0
Θ(𝜌0 − 𝜌′)x̂, (2)

Due to the rotational symmetry of the set up, we can compute the magnetic field at 𝑦 = 0
and then rotate it to the desired angle.

r − r′ = 𝑧 ̂z + (𝑥 − 𝑥′) x̂, (3)

Let us first consider the magnetic field outside the wire., i.e., 𝑧 > 𝜌0.

B(𝑥, 𝑧) = 𝜇0
4𝜋𝐼 ∫

𝐿
2

− 𝐿
2

𝑑𝑥′ x̂ × (𝑧 ̂z + (𝑥 − 𝑥′) x̂)
(𝑧2 + (𝑥 − 𝑥′)2)3/2 = 𝑧 ŷ𝜇0

4𝜋𝐼 ∫
𝐿
2

− 𝐿
2

𝑑𝑥′ 1
(𝑧2 + (𝑥 − 𝑥′)2)3/2

= ŷ 𝜇0
4𝜋𝑧 𝐼 ∫

𝐿/2+𝑥
𝑧

− 𝐿/2−𝑥
𝑧

𝑑𝑢 1
(1 + 𝑢2)3/2 = ŷ 𝜇0

4𝜋𝑧𝐼 [ 𝑢√
1 + 𝑢2 ]

𝐿/2+𝑥
𝑧

− 𝐿/2−𝑥
𝑧

= ŷ 𝜇0
4𝜋𝑧 𝐼 ⎡⎢

⎣

𝑥 + 𝐿/2
√𝑧2 + (𝑥 + 𝐿/2)2

− 𝑥 − 𝐿/2
√𝑧2 + (𝑥 − 𝐿/2)2

⎤⎥
⎦

. (4)
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The Linked-Flux

The concept of linked-flux is a bit ambiguous for segments of wires which are not closed. To
address this issue, imagine the the top wire is actually an arc of a circle of radius 𝑅 and length
𝐿. With this picture, it is more clear that the flux created by the lower wire and linked to the
upper wire is in the domain 𝑧 > 𝑑. We can recover the straight wire result by taking the limit
𝑅 → ∞.

On the 𝑥 axis, we will want to integrate over 𝑥 to compute the flux, however, we can’t really
integrate from −∞ to ∞ because this will enclose other wires supplying current to the wire
we are considering. Therefore, we will have to integrate over a finite interval, say [−𝐿/2, 𝐿/2].
This methodology is consistent with the other method of computing the self-inductance of a
wire segment as proposed by Neumann. [2] [3] [4]

The differential flux going through a strip of width 𝑑𝑥 at 𝑧 is given by

𝑑Φ(𝑧) = 𝑑𝑧 ∫
𝐿/2

−𝐿/2
𝑑𝑥B(𝑥, 𝑧) = 𝑑𝑧 𝜇0𝐼

4𝜋𝑧 [√𝑧2 + (𝑥 + 𝐿/2)2 − √𝑧2 + (𝑥 − 𝐿/2)2]
𝐿/2

−𝐿/2
= 𝑑𝑧 𝜇0𝐼

2𝜋𝑧 [√𝑧2 + 𝐿2 − 𝑧] .(5)

Finally, we integrate over 𝑧 to get the total flux:

Φ = ∫
∞

𝜌0

𝑑Φ(𝑧) = 𝜇0𝐼
2𝜋 ∫

∞

𝜌0

𝑑𝑧
𝑧 [√𝑧2 + 𝐿2 − 𝑧] = 𝜇0𝐼

2𝜋 ∫
∞

𝜌0

𝑑𝑧 [
√

𝑧2 + 𝐿2

𝑧 − 1] (6)

Let’s do the harder integral first with the substitution 𝑧 = 𝐿 sinh 𝑡:

𝐼 = ∫ 𝑑𝑧
√

𝑧2 + 𝐿2

𝑧 = 𝐿 ∫ 𝑑𝑡cosh2 𝑡
sinh 𝑡 = 𝐿 ∫ 𝑑𝑡 [ 1

sinh 𝑡 + sinh 𝑡] = 𝐿 ∫ 𝑑𝑡 2
𝑒𝑡 − 𝑒−𝑡 + 𝐿 cosh 𝑡

= 𝐿 ∫ 𝑑(𝑒𝑡) 2
𝑒2𝑡 − 1 + 𝐿 cosh 𝑡 = 𝐿 [ln (𝑒𝑡 + 1

𝑒𝑡 − 1) + sinh 𝑡] = 𝐿 [ln (tanh 𝑡
2) + cosh 𝑡] (7)

Now use tanh 𝑡
2 = sinh 𝑡

1+cosh 𝑡 to get:

𝐼 = 𝐿 ln ( 𝑧
𝐿 +

√
𝑧2 + 𝐿2 ) + √𝑧2 + 𝐿2. (8)

Putting it all together with the limits we get:

Φ = 𝜇0𝐼
2𝜋 [𝐿 ln ( 𝑧

𝐿 +
√

𝑧2 + 𝐿2 ) + √𝑧2 + 𝐿2 − 𝑧]
∞

𝑑

= 𝜇0𝐼
2𝜋 [−𝐿 ln ( 𝑑

𝐿 +
√

𝑑2 + 𝐿2 ) − √𝑑2 + 𝐿2 + 𝑑] ≃ 𝜇0𝐼𝐿
2𝜋 [ln (2𝐿

𝑑 ) − 1] , (9)
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where we assumed 𝑑 ≪ 𝐿. Using the relation ℒ = 𝐼Φ we get:

ℳ = 𝜇0𝐿
2𝜋 [ln (2𝐿

𝑑 ) − 1] , (10)

where ℳ is the mutual inductance.

If these two wires are part of a closed loop, the total inductance is given by the sum of the
self-inductance of each wire plus the mutual inductance between them.

ℒ𝑡𝑜𝑡𝑎𝑙 = 2ℒ − 2ℳ, (11)

where ℒ is the self-inductance of each wire.We calculated the self-inductance of a wire segment
in a previous post:

ℒ = 𝜇0𝐿
2𝜋 [ln (2𝐿

𝜌0
) − 1 + 𝜇

4𝜇0
] . (12)

Therefore, the total inductance is given by:

ℒ𝑡𝑜𝑡𝑎𝑙 = 2ℒ − 2ℳ = 𝜇0𝐿
𝜋 [ln ( 𝑑

𝜌0
) + 𝜇

4𝜇0
] . (13)

Although it was instructive to calculate the inductance of the wire segments in terms of its self
and mutual inductance components, we could have calculated the total inductance directly by
integrating the net flux:

Φ = 𝜇0𝐼
𝜋 ∫

𝑑−𝜌0

𝜌0

𝑑𝑧
𝑧 [√𝑧2 + 𝐿2 − 𝑧] ≃ 𝜇0𝐼

𝜋 ln ( 𝑑
𝜌0

) (14)

, which results in the same total inductance as before.
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