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This article presents a detailed derivation of the mutual inductance between two
parallel wire segments using Neumann’s method. Starting from the fundamental
electromagnetic energy expression involving the vector potential and current den-
sity, we evaluate the mutual inductance through direct integration. The analysis
assumes thin wire approximation and provides the final result in terms of the wire
length and separation distance. This approach offers an alternative perspective
to the more commonly used flux-based calculations, while arriving at the same
well-known logarithmic dependence on the geometric parameters.

blog: https://tetraquark.vercel.app/posts/wirePairInductanceNeumann/ email: quarkte-
tra@gmail.com

Energy in the field

I have discussed the self-inductance of a wire segment in a previous post and the mutual
inductance of two wire segments in a previous post. Now I will revisit the mutual inductance
of two wire segments using Neumann’s method.

Figure 1 shows a wire segment of length 𝐿 carrying a current 𝐼 and located at the origin, and
its pair carrying the return current 𝐼 and located at 𝑧 = 𝑑.
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Figure 1: A segment of a wire carrying current 𝐼 and its pair carrying the return current at
𝑧 = 𝑑.

The energy stored in the field due to the interaction of the two wires is roughly given by
A ⋅ J. The origin of this expression can be traced back to gauging the quantum description of
electrons with the vector potential A which couples 𝐴 to the current density J.

𝒲 = 1
2 ∫ 𝑑3rJ(r) ⋅ A(r) = 𝜇0

8𝜋 ∫ 𝑑3r𝑑3r′ J(r′) ⋅ J(r)
|r − r′| , (1)

where the current densities J are concentrated in the wire segments:

J(r′) = 𝐼
𝜋𝜌2

0
Θ(𝜌0 − 𝜌′)x̂. (2)

The integrals in Eq. 1 collapses to line integrals over the wire segments:

𝒲 = 𝜇0𝐼2

8𝜋 ∫
𝐿
2

− 𝐿
2

𝑑𝑥′ ∫
𝐿
2

− 𝐿
2

𝑑𝑥
√𝑑2 + (𝑥 − 𝑥′)2 . (3)

Let us evaluate the integral over 𝑥 first by defining (𝑥 − 𝑥′)/𝑑 ≡ sinh 𝑡:

∫
𝐿
2

− 𝐿
2

𝑑𝑥
√𝑑2 + (𝑥 − 𝑥′)2 = ∫

sinh−1( 𝐿
2𝑑 −𝑥′/𝑑)

− sinh−1(𝑥′/𝑑+ 𝐿
2𝑑 )

𝑑 sinh 𝑡 1
√1 + sinh2 𝑡

= sinh−1 (𝑥′/𝑑 + 𝐿
2𝑑) − sinh−1 (𝑥′/𝑑 − 𝐿

2𝑑) . (4)

The next step will require us to integrate sinh−1(𝑢). Let’s define 𝑣 = sinh(𝑢), and derive the
following identity:

∫ 𝑑𝑢 sinh−1(𝑢) = ∫ 𝑑𝑣 𝑣 cosh 𝑣 = ∫ 𝑑 (𝑣 sinh 𝑣) − ∫ 𝑑 cosh 𝑣 = 𝑣 sinh 𝑣 − cosh 𝑣

= sinh−1(𝑢)𝑢 − √1 + 𝑢2 (5)
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Furthermore, we can use the identity sinh−1 𝑢 = ln (𝑢 +
√

1 + 𝑢2). Putting it all together we
get:

𝒲 = 𝜇0𝐼2

4𝜋 [−𝐿 ln ( 𝑑
𝐿 +

√
𝑑2 + 𝐿2 ) − √𝑑2 + 𝐿2 + 𝑑] ≃ 1

2 (𝜇0𝐿
2𝜋 [ln (2𝐿

𝑑 ) − 1]) 𝐼2,(6)

where we assumed 𝑑 ≪ 𝐿. Using the relation 𝒲 = 1
2ℳ𝐼2 we get:

ℳ = 𝜇0𝐿
2𝜋 [ln (2𝐿

𝑑 ) − 1] , (7)

where ℳ is the mutual inductance.

3


	Energy in the field

