• Tetra Quark

Other Formats

  • PDF

Eigenvectors of \(\hat{n}\cdot\vec{\sigma}\)

Quantum
Published

February 6, 2020

Abstract
In this blog post, we explore an alternative method for finding the eigenvectors of the operator \(\hat{n}\cdot\vec{\sigma}\), where \(\vec{\sigma}\) represents the Pauli matrices and \(\hat{n}\) is a unit vector. Rather than using conventional eigenvalue methods, we demonstrate how to obtain the eigenvectors through a series of rotations in spin space. This approach not only yields the correct results but also provides deeper insights into why the Pauli matrices transform as vector quantities under rotations.
Keywords

Quantum Mechanics, Scattering

The straightforward way to find the eigenvectors of \(\hat{n}\cdot\vec{\sigma}\) would be to use the usual method for finding eigenvalues and then the eigenvectors. Let us try to solve the problem using another method. We have \(\hat{n}=\sin\theta\cos\phi\,\hat{x}+\sin\theta\sin\phi\,\hat{y}+\cos\theta\,\hat{z}\). Assume we start with \(\hat{n}\) pointing along \(\hat{z}\), so the state is \(|\hat{z}_{up}\rangle=\left( \begin{array}{c} 1 \\ 0 \\ \end{array} \right)\) which is an eigenvector of the \(\vec{S}\cdot\hat{n}\) operator with eigenvalue \(1\). Let us rotate the state \(|\hat{z}_{up}\rangle\) around \(\hat{y}\) by angle \(\theta\) which can be done by acting with the operator; \[\begin{equation} e^{-i \sigma_y \theta/2}=\left( \begin{array}{cc} \cos(\frac{\theta}{2}) &-\sin(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \\ \end{array} \right). \label{eq:ry} \end{equation}\] You can check that above equation is correct by Taylor expanding the \(e^{-i \sigma_y \theta/2}\), or you can visualize the effect as rotating a vector around \(\hat{y}\) by angle \(\theta\) keeping in mind that this is not really a vector (spin-1 particle), but it is a spinor (spin 1/2), which is reflected by the fact that we have \(\frac{\theta}{2}\) instead of \(\theta\). Next task is to rotate again, around the \(\hat{z}\) by angle \(\phi\) which can be done by acting with the operator; \[\begin{equation} e^{-i \sigma_z \phi/2}=\left( \begin{array}{cc} e^{-i \frac{\phi}{2}} &0 \\ 0& e^{i \frac{\phi}{2}} \\ \end{array} \right).\label{eq:rz} \end{equation}\] The composite operator becomes \[\begin{eqnarray} e^{-i \sigma_z \phi/2} e^{-i \sigma_y \theta/2} &=& \left( \begin{array}{cc} e^{-i \frac{\phi}{2}} &0 \\ 0& e^{i \frac{\phi}{2}} \\ \end{array} \right) \left( \begin{array}{cc} \cos(\frac{\theta}{2}) &-\sin(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \\ \end{array} \right)\nonumber \\ &=& \left( \begin{array}{cc} e^{-i \frac{\phi}{2}} \cos(\frac{\theta}{2}) & -e^{-i \frac{\phi}{2}}\sin(\frac{\theta}{2}) \\ e^{i \frac{\phi}{2}}\sin(\frac{\theta}{2}) & e^{i \frac{\phi}{2}}\cos(\frac{\theta}{2}) \\ \end{array} \right). \label{eq:expsig} \end{eqnarray}\] The eigenvectors can be recovered as \[\begin{eqnarray} |\hat{n}+\rangle &=& e^{-i \sigma_z \phi/2} e^{-i \sigma_y \theta/2}|\hat{z}_{up}\rangle= \left( \begin{array}{c} e^{-i \frac{\phi}{2}} \cos(\frac{\theta}{2}) \\ e^{i \frac{\phi}{2}}\sin(\frac{\theta}{2}) \\ \end{array} \right),\nonumber\\ |\hat{n}-\rangle &=& e^{-i \sigma_z \phi/2} e^{-i \sigma_y \theta/2}|\hat{z}_{down}\rangle= \left( \begin{array}{c} -e^{-i \frac{\phi}{2}} \sin(\frac{\theta}{2}) \\ e^{i \frac{\phi}{2}}\cos(\frac{\theta}{2}) \\ \end{array} \right).\label{eq:evec} \end{eqnarray}\]

In order to find \(\langle\hat{n}\pm|\vec{S}|\hat{n}\pm\rangle\) we can use the above method to express \(|\hat{n}\pm\rangle\) in terms of \(|\hat{z}_{u,d}\rangle\). \[\begin{equation} \langle\hat{n}\pm|\vec{S}|\hat{n}\pm\rangle=\langle\hat{z}_{u,d}|e^{i \sigma_y \theta/2}e^{i \sigma_z \phi/2} \vec{S}e^{-i \sigma_z \phi/2} e^{-i \sigma_y \theta/2}|\hat{z}_{u,d}\rangle. \label{eq:estates} \end{equation}\] To simplify the relation, we will compute the object \(e^{i \sigma_j \alpha/2}\sigma_k e^{-i \sigma_j \alpha/2}\) where we will assume \(k\neq j\) (if \(k=j\), we can move \(\sigma_k\) through the exponentials to get \(\sigma_k\)). Consider \(k\neq j\) case: \[\begin{eqnarray} e^{i \sigma_j \alpha/2}\sigma_k e^{-i \sigma_j\alpha/2} &=& \left(I \cos(\frac{\alpha}{2})+i \sigma_j \sin(\frac{\alpha}{2})\right) \sigma_k \left(I \cos(\frac{\alpha}{2})-i \sigma_k \sin(\frac{\alpha}{2})\right)\nonumber\\ &=& \cos\alpha\sigma_k -\sin\alpha \epsilon_{j k m} \sigma_m =\left( \cos\alpha\delta_{k m}+\sin\alpha \epsilon_{k j m}\right)\sigma_m\nonumber\\ &\equiv& R^{(j)}_{k m}(\alpha)\sigma_m. \label{eq:expsig2} \end{eqnarray}\] This equation is nothing but the rotation equation for the vector \(\vec{\sigma}\) around the \(j\)-axis. This tells us that \(\vec{\sigma}\) indeed transforms like a vector, this is why it has a vector arrow on top! Now the problem becomes easier, \[\begin{eqnarray} \langle\hat{n}\pm|S_k|\hat{n}\pm\rangle&=&\langle\hat{z}_{u,d}| e^{i \sigma_y \theta/2}e^{i \sigma_z \phi/2} S_k e^{-i \sigma_z \phi/2} e^{-i \sigma_y \theta/2}|\hat{z}_{u,d}\rangle \nonumber\\ &=&\langle\hat{z}_{u,d}|e^{i \sigma_y \theta/2} R^{(z)}_{k m}(\phi)S_m e^{-i \sigma_y \theta/2}|\hat{z}_{u,d}\rangle \nonumber\\ &=&R^{(z)}_{k m}(\phi)R^{(y)}_{m n}(\theta)\langle\hat{z}_{u,d}|S_n|\hat{z}_{u,d}\rangle\nonumber\\ &=&\pm\frac{1}{2}R^{(z)}_{k m}(\phi)R^{(y)}_{m 3}(\theta). \label{eq:estates2} \end{eqnarray}\] We need to keep in mind that \(R^{(j)}_{k m}(\alpha)=\delta_{k m}\) for \(j=k\). Componentwise we get \[\begin{eqnarray} \langle\hat{n}\pm|S_3|\hat{n}\pm\rangle &=& \pm\frac{1}{2}R^{(z)}_{3 m}(\phi)R^{(y)}_{m 3}(\theta)= \pm\frac{1}{2}\delta_{3 m} R^{(y)}_{m 3}(\theta) =\pm\frac{1}{2}R^{(y)}_{3 3} =\pm\frac{1}{2}\cos\theta\nonumber, \\ \langle\hat{n}\pm|S_2|\hat{n}\pm\rangle &=& \pm\frac{1}{2}R^{(z)}_{2 m}(\phi)R^{(y)}_{m 3}(\theta)= \pm\frac{1}{2}\sin\theta\sin\phi,\nonumber\\ \langle\hat{n}\pm|S_1|\hat{n}\pm\rangle &=& \pm\frac{1}{2}R^{(z)}_{1 m}(\phi)R^{(y)}_{m 3}(\theta)= \pm\frac{1}{2}\sin\theta\cos\phi. \label{eq:estates3} \end{eqnarray}\] And these results can be combined into \(\langle\hat{n}\pm|\vec{S}|\hat{n}\pm\rangle =\pm\frac{1}{2}\hat{n}\) As one can argue, this is not the fastest method to solve the problem, however it provides insights to \(\sigma\)- matrices and shows why they deserve the arrow on top. This comes from the fact that structure constants (\(\epsilon_{i j k}\)) in the fundamental representation of \(SU(2)\) group (the group of \(2\times 2\) matrices generated by \(\sigma\)-matrices), become the generators of the adjoint representation, i.e., the usual vector space.