Wiener Khinchin Theorem
Wiener Khinchin Theorem, spectral analysis, random processes
\(\require{cancel}\) \(\def\oot{\frac{1}{2}}\)
Consider a random variable \(x(t)\) which evolves with time. The auto correlation function is defined as: \[\begin{eqnarray} C(\tau)=\langle x(t) x(t+\tau)\rangle. \label{eq:autoc} \end{eqnarray}\] The Fourier transform of \(C(\tau)\) is defined as \[\begin{eqnarray} \hat C(\omega)=\int_{-\infty}^\infty d \tau e^{-i\omega \tau}C(\tau). \label{eq:autocF} \end{eqnarray}\]
Let us define the truncated Fourier transform of \(x(t)\) as \[\begin{eqnarray} \hat x_T(\omega)=\int_{-\frac{T}{2}}^{\frac{T}{2}} dt x(t) e^{-i\omega t}, \label{eq:xt} \end{eqnarray}\] and the truncated spectral power density as \[\begin{eqnarray} S_T(\omega)=\frac{1}{T}\langle |\hat x_T(\omega)|^2\rangle. \label{eq:swT} \end{eqnarray}\] The spectral power density is the limiting case of \(S_T(\omega)\):
\[\begin{eqnarray} S(\omega)=\lim_{T\to \infty}S_T(\omega)=\lim_{T\to \infty}\frac{1}{T}\langle |\hat x_T(\omega)|^2\rangle. \label{eq:sw} \end{eqnarray}\]
The Wiener-Khinchin Theorem states that if the limit in Eq. \(\ref{eq:sw}\) exists, then the spectral power density is the Fourier transform of the the auto correlation function, i.e., the following equality holds: \[\begin{eqnarray} S(\omega)=\int_{-\infty}^\infty d \tau e^{-i\omega \tau}C(\tau). \label{eq:WautocF} \end{eqnarray}\]
We start from the average of \(|\hat x_T(\omega)|^2\) \[\begin{eqnarray} |\hat x_T(\omega)|^2&=&\int_{-\frac{T}{2}}^{\frac{T}{2}} \int_{-\frac{T}{2}}^{\frac{T}{2}}dt' dt \langle x(t') x(t) \rangle e^{-iw(t'-t)}\nonumber\\ &=&\int_{-\frac{T}{2}}^{\frac{T}{2}} \int_{-\frac{T}{2}}^{\frac{T}{2}}dt' dt C(t'-t)e^{-i\omega(t'-t)}. \label{eq:WautocF2} \end{eqnarray}\] Note that \(C(t'-t)e^{-i\omega(t'-t)}\) depends only on the difference of the parameters.
The key insight is that we can change variables from \((t, t')\) to \((u, v)\) where \(u = t' - t\) and \(v = t' + t\). This transformation maps the square integration domain to a diamond-shaped domain, and since the integrand depends only on \(u = t' - t\), the integration over \(v\) gives the height of the integration region.
We want to compute the integral \(I=\int_{\frac{-T}{2}}^{\frac{T}{2}}\int_{\frac{-T}{2}}^{\frac{T}{2}} dt' dt f(t'-t)\).
The argument of the function begs for a change of coordinates:
\[\begin{eqnarray} u=t'-t, \quad \text{and} \quad v=t+t' \label{eq:trans}, \end{eqnarray}\] and the associated inverse transform reads: \[\begin{eqnarray} t'=\frac{u+v}{2}, \quad \text{and} \quad t=\frac{v-u}{2}. \label{eq:transi} \end{eqnarray}\]
This transformation will rotate and scale the integration domain as shown in Figure 1.
The equation of the top boundary on the right can be written as \(v=T-u\), and on the left as $ v= T+u$. We can actually combine them as \(v=T-|u|\). We can do the same analysis for the lower boundaries to see that the height of the slices at a given \(u\) is \(2(T-|u|)\). This will help us easily integrate \(v\) out as follows: \[\begin{eqnarray} I&=&\int_{\frac{-T}{2}}^{\frac{T}{2}}\int_{\frac{-T}{2}}^{\frac{T}{2}} dt' dt f(t'-t) =\iint_{S_{u,v}}\left|\frac{\partial(t,t')}{\partial(u,v)}\right| dv du f(u)\nonumber\\ &=&\int_{-T}^T 2(T-|u|) \times\frac{1}{2} dv du f(u)=\int_{-T}^T du f(u)(T-|u|) \label{eq:transeq}, \end{eqnarray}\] where \(\left|\frac{\partial(t,t')}{\partial(u,v)}\right|=\frac{1}{2}\) is the determinant of the Jacobian matrix associated with the transformation in Eq. \(\ref{eq:transi}\).
Therefore, setting \(u=\tau\), we get \[\begin{eqnarray} |\hat x_T(\omega)|^2&=& \int_{-T}^{T} d\tau e^{-i\omega\tau} C(\tau)(T-|\tau|). \label{eq:WautocFF2} \end{eqnarray}\] Taking the average we have the required result: \[\begin{eqnarray} S(\omega)&=&\lim_{T\to \infty}S_T(\omega)=\lim_{T\to \infty}\frac{1}{T}\langle |\hat x_T(\omega)|^2\rangle\nonumber\\ &=& \lim_{T\to \infty}\frac{1}{T}\int_{-T}^{T} d\tau e^{-i\omega\tau} C(\tau)(T-|\tau|)=\int_{-\infty}^{\infty} d\tau e^{-i\omega\tau} C(\tau), \label{eq:sww} \end{eqnarray}\] which completes the proof.