Inductance of a Wire Pair with Neumann’s Method
Electromagnetism, Magnetism
\(\require{cancel}\)
Energy in the field
I have discussed the self-inductance of a wire segment in a previous post and the mutual inductance of two wire segments in a previous post. Now I will revisit the mutual inductance of two wire segments using Neumann’s method.
Figure 1 shows a wire segment of length \(L\) carrying a current \(I\) and located at the origin, and its pair carrying the return current \(I\) and located at \(z=d\).
The energy stored in the field due to the interaction of the two wires is roughly given by \(\mathbf{A}\cdot \mathbf{J}\). The origin of this expression can be traced back to gauging the quantum description of electrons with the vector potential \(\mathbf{A}\) which couples \(A\) to the current density \(\mathbf{J}\).
\[\begin{eqnarray} \mathcal{W} &=&\frac{1}{2}\int d^3 \mathbf{r} \mathbf{J}(\mathbf{r}) \cdot \mathbf{A}(\mathbf{r}) =\frac{\mu_0 }{8\pi}\int d^3 \mathbf{r}d^3 \mathbf{r}'\frac{ \mathbf{J}(\mathbf{r}') \cdot \mathbf{J}(\mathbf{r})}{ | \mathbf {r}- \mathbf {r}'|}, \label{eq:biotsavartlaw} \end{eqnarray}\]
where the current densities \(\mathbf{J}\) are concentrated in the wire segments: \[\begin{eqnarray} \mathbf{J}(\mathbf{r}') &=&\frac{I}{\pi \rho_0^2} \Theta(\rho_0-\rho') \hat{\mathbf{x}} \label{eq:jcur}. \end{eqnarray}\] The integrals in Eq. \(\ref{eq:biotsavartlaw}\) collapses to line integrals over the wire segments: \[\begin{eqnarray} \mathcal{W} &=&\frac{\mu_0 I^2}{8\pi} \int_{-\frac{L}{2}}^{\frac{L}{2}} dx' \int_{-\frac{L}{2}}^{\frac{L}{2}} \frac{ dx }{\sqrt{ d^2+(x-x')^2} }. \label{eq:wline} \end{eqnarray}\] Let us evaluate the integral over \(x\) first by defining \((x-x')/d\equiv \sinh t\): \[\begin{eqnarray} \int_{-\frac{L}{2}}^{\frac{L}{2}} \frac{ dx }{\sqrt{ d^2+(x-x')^2} } &=& \int_{-\sinh^{-1}\left(x'/d+\frac{L}{2d}\right)}^{\sinh^{-1}\left(\frac{L}{2d}-x'/d\right)} d\sinh t \frac{ 1 }{\sqrt{ 1+\sinh^2 t} }\nonumber\\ &=& \sinh^{-1}\left(x'/d+\frac{L}{2d}\right)-\sinh^{-1}\left(x'/d-\frac{L}{2d}\right). \label{eq:intx} \end{eqnarray}\]
The next step will require us to integrate \(\sinh^{-1}(u)\). Let’s define \(v=\sinh(u)\), and derive the following identity: \[\begin{eqnarray} \int du \sinh^{-1}(u)&=&\int dv \, v \cosh v =\int d\left(v \sinh v \right)-\int d \cosh v =v \sinh v -\cosh v\nonumber\\ &=& \sinh^{-1}(u) u-\sqrt{1+u^2} \label{eq:intsinh} \end{eqnarray}\]
Furthermore, we can use the identity \(\sinh^{-1} u=\ln \left( u+\sqrt{1+u^2} \right)\). Putting it all together we get:
\[\begin{eqnarray} \mathcal{W} &=&\frac{\mu_0 I^2}{4\pi}\left[-L \ln \left( \frac{d}{L+\sqrt{d^2+L^2}} \right) - \sqrt{d^2+L^2} +d\right] \simeq\frac{1}{2} \left(\frac{\mu_0 L}{2\pi} \left[\ln \left( \frac{2L}{d} \right) -1\right]\right)I^2 \label{eq:fluxfinal}, \end{eqnarray}\] where we assumed \(d \ll L\). Using the relation \(\mathcal{W}=\frac{1}{2}\mathcal{M}I^2\) we get: \[\begin{eqnarray} \mathcal{M}&=&\frac{\mu_0 L}{2\pi} \left[\ln \left( \frac{2L}{d} \right) -1\right] \label{eq:lout}, \end{eqnarray}\] where \(\mathcal{M}\) is the mutual inductance.